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Abstract— The interest in the numerical simulation of free 

surface flows is increasing due to the rapid development of 

computer technology. A two-dimensional numerical model 

based on the Marker and Cell (MAC) method is developed in 

this study. In the current development, the advection term in 

the Navier-Stokes equation is solved using the third-order 

Quadratic Upstream Interpolation for Convective Kinematics 

(QUICK) scheme. For verification and validation purposes, the 

performance of the numerical model is checked by simulating 

the classical dam-break flow problem. Satisfactory agreements 

are observed between the numerical and the previous 

experimental results in term of the development of free surface 

profile, the propagation of front wave, the attenuation of depth 

at the origin and the impact force on the downstream wall. 

Keywords—numerical simulation, MAC method, QUICK 

scheme, free surface flow 

I. INTRODUCTION 

The water flow phenomena is complex and difficult to 
solve analytically without assumptions. With the emergence 
and rapid development of computer technology, the 
Computational Fluid Dynamics (CFD) model is used to solve 
the problem numerically. Several numerical methods for free 
surface flow problem have been developed in the field of 
CFD over the past few decades. For example, Marker and 
Cell (MAC) method [1], Volume of Fluid (VOF) method [2], 
level set method [3] and others. Each numerical technique 
has its own advantages and weaknesses in term of accuracy, 
simplicity of the algorithm, flexibility and speed of 
convergence. A so-called comprehensive numerical model is 
capable of simulating the flow of various cases robustly and 
predicting the flow parameters qualitatively and 
quantitatively. 

MAC method was invented back in the early sixties at the 
Los Alamos Laboratories, with the considerably greater 
computing power that we now enjoy. However, it is 
witnessing a revival and, for free surface fluid flow 
problems, showing itself the equal of any of the competing 
methods. Many researchers have been using the MAC 
method widely to discretize equations for simulation works 
[4, 5]. One of the key features of the MAC method is the use 
of Lagrangian virtual particles, whose coordinates are stored, 
and which move from a cell to the next according to the 
latest computed velocity field. It is deemed to contain fluid, 
if a cell contains a particle, thus providing flow visualization 
of the free surface.  

Numerical simulation of free surface flow has been the 
subject of extensive research for a long time [6, 7]. A higher 
order scheme is needed to produce accurate results with less 
diffusion. This study aims to develop a two-dimensional 
model based on MAC method with the application of higher 
order scheme to solve the advection term. The numerical 
results in term of the development of free surface profile, the 
propagation of front wave, the attenuation of depth at the 
origin and the impact force are discussed and compared with 
the available experimental results obtained from literature 
reviews. 

II. NUMERICAL PROCEDURE 

A. Governing equations 

The governing equations for the numerical model are the 
momentum equation (derived from the conservation of linear 
momentum) and the continuity equation (derived from the 
conservation of mass) which are shown in (1) and (2). Based 
on the staggered grid system as shown in Fig. 1, the 
momentum equations in x and y directions are discretized 
with the finite difference method (FDM) and solved to 
satisfy the continuity equation. For an incompressible fluid, 
the fluid density is constant. 
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Where ρ is the density of the fluid, P is the pressure, V is the 
velocity vector, ν is the kinematic viscosity and g is the 
gravitational acceleration vector. 

 

Fig. 1. Staggered grid system. 
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B. Numerical algorithm 

MAC method calculations utilize an Eulerian finite-
difference mesh on rectangular cells, together with time 
advancement through finite intervals. Fig. 2 shows the one-
time step algorithm.  

 

Fig. 2. General algorithm of MAC method. 

By using the explicit Euler scheme, the temporal terms 
∂u/∂t and ∂v/∂t in the momentum equations can written as 
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All the terms in F and G are evaluated at time step n, 
whereas the pressure gradients are evaluated at time step 
n+1. By modifying the governing equations with the 
condition of zero velocity divergence, Poisson equation for 
the pressure Pn+1 as shown in (7) is obtained. In this study, 
the Poisson equation is solved implicitly by Gauss-Seidel 
method. 
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Once the new pressure field is known, the final velocity 
field that satisfies the zero velocity divergence condition is 
then updated. In this study, the first-order upwind scheme 

which is originally devised in the MAC method is replaced 
by the third-order Quadratic Upstream Interpolation for 
Convective Kinematics (QUICK) scheme [8] to solve the 
advection terms in (1). For example, the velocity u in 
direction x at cell i is evaluated as follows. 
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At each step, appropriate boundary conditions are 
imposed at the imaginary cells and the free surface 
boundaries. In each free surface cell, the pseudo pressure is 
equal to the true pressure which is necessary to satisfy the 
free surface normal stress condition. Otherwise, only the 
physical boundary conditions on the velocity field itself are 
required. Lastly, based on the new velocity field, the 
massless marker particles (MPs) imbedded in the fluid are 
moved, giving the new fluid configuration. Marker particles 
are moved with a velocity that is a weighted average of the 
nearest cell velocities. For example, the velocity of marker 
particle in x direction is calculated as an interpolated value of 
the four nearest velocities u at cells shown in Fig. 3.  

 

Fig. 3. Determination of velocity of marker particle in x direction. 

C. Numerical model setup 

Prior to assess the correctness of the developed 
algorithms in the numerical model, the numerical model is 
first verified with the dam-break flow problem, which is a 
famous benchmark testing case. The numerical simulation 
setup is shown in Fig. 4, where a fixed volume of water is 
released on an initially dry horizontal channel. The 
propagation of wave front, L and the attenuation of depth at 
the origin, h at the origin are compared against Koshizuka et 
al. [9] and Martin and Moyce [10]. 

 

Fig. 4. Dam-break flow of finite volume fluid. 

The accuracy of the numerical model is checked via the 
validation with the previous experiment conducted by 
Lobovsky et al. [11]. The numerical model domain and the 
initial conditions are set based on Fig. 5. Non-slip condition 
is used for the floor and walls. Other parameters used in the 
numerical model are shown in Table I.  
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Fig. 5. Initial geometry of water column (dimensions are in millimetres). 

TABLE I.  NUMERICAL SIMULATION CONDITION FOR DAM-BREAK 

FLOW PROBLEM 

Parameter Value 

Initial water column width, Lo(m) 0.30 

Initial water column height, Ho(m) 0.60 

Kinematic viscosity, ν (m2s-1) 1.0 x 10-6 

Density, ρ (kgm-3) 1000.00 

Grid size, Δx (m) 0.01 

Grid size, Δy (m) 0.01 

Time step, Δt (s) 1.0 x 10-6 

Gravitational acceleration, g (ms-2) -9.81 

III. RESULTS AND DISCUSSION 

A. Verification of numerical model 

Figs. 6 and 7 display the dimensionless front wave 
propagation and the dimensionless attenuation of depth at the 
origin, respectively. Based on Fig. 6, there is a small 
discrepancy between the numerical and experimental results 
at the later stage of the flow. This might be due to the fact 
that in the experiment, there is friction on the floor and thus 
dissipation plays a role, causing a loss in momentum and 
thus deceleration. Furthermore, the removal of dam gate in 
the experiment may account for the delay of water release on 
top of the column, especially when the water column height 
to column base ratio is high, where the friction between dam 
gate and water particle cannot be neglected. These problems 
are not accounted for in the numerical simulation. On the 
contrary, the numerical results by MAC+QUICK model 
show good agreement with the experimental results by 
Koshizuka et al. [9] and Martin and Moyce [10] in terms of 
the rate of attenuation of depth at the origin (Fig. 7).  
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Fig. 6. Front wave propagation. 
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Fig. 7. Attenuation of depth at the origin. 

B. Validation of numerical model 

a) Comparison of Flow Profile 

Fig. 8 depicts the flow profiles at different times of the 
simulation compared with the experimental results by 
Lobovsky et al. [11]. For the purpose of comparison between 
the different orders of the numerical schemes, the results of a 
single-phase model by a proprietary software, FLOW-3D 
which adopts the first-order scheme are also added in Fig. 8.  

As shown in Fig. 8, several stages are displayed upon the 
removal of the dam gate. The first stage is the advancing 
downstream wave front, followed by the wave impact on the 
downstream wall and the consequent run-up. Subsequently, a 
plunging breaker is formed in the back flow that develops in 
a combination of bore propagation and a mixing layer on top 
of the laminar layer of fluid yet advancing towards the wall. 
A lot of vorticity is generated at this stage. This corresponds 
to findings by Landrini et al. [12] who analysed this 
phenomenon numerically. 

From the comparison, both numerical models exhibit the 
capability of producing almost identical flow surface profile 
as experiment at the early stage of dam-break flow. 
However, it is interesting to note that the FLOW-3D model 
with a lower order numerical accurate scheme produces a 
lower surge speed. This can be seen at time t = 0.45 s, the 
simulated wave for the case with the first-order scheme is 
about to hit the downstream wall, whereas the splashed-up 
wave is observed in the experiment and simulation by the 
MAC+QUICK model (Fig. 8). 

After the flow hits the downstream wall, the 
MAC+QUICK model could not reproduce similar flow 
profile as in the experiment after the time t = 0.862 s (Fig. 8). 
This might be due to the lack of turbulence model in the 
numerical model as well as the mesh resolution factor. 
Another plausible reason is the finite number of particles 
representing the fluid in the MAC method, which might 
create the false regions of void in flows with high shear [13]. 
The free surface boundary conditions are also problematic, 
where the conditions are applied in an approximate way that 
often leads to instability at the free surface [1]. As the MAC 
method implements the linear interpolation scheme for 
efficiency consideration, large errors could arise near the 
highly distorted free surface, especially for breaking wave. 
Therefore, it cannot correctly represent the physical situation. 

b) Comparison of pressure on downstream wall 

In the experiment by Lobovsky et al. [11], the impact 
pressures on the vertical wall at the downstream wall at four 
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Fig. 8. Comparison of surface profile of dam-break problem between (a) experiment by Lobovsky et al. [11], (b) simulation by FLOW-3D and (c) 

simulation by MAC+QUICK model. 
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(c)                                                                                               (d) 

Fig. 9. Pressure time histories of sensors (a) P1, (b) P2, (c) P3 and (d) P4 at 3 mm, 15 mm, 30 mm and 80 mm from flume’s bottom, respectively. 

different heights were measured (Fig. 9). The recorded 
pressure P is non-dimensionalized with regards to the 
hydrostatic pressure ρgHo and plotted versus the non-
dimensional time t* which is defined as t(g/Ho)0.5. 

A comparison of the pressure peaks and their 
corresponding occurrence time was made between the 
experimental and numerical results. A slight discrepancy 

between the numerical results by different scheme order of 
accuracy is observed in terms of the arrival time of the wave 
at the downstream wall. It is interesting to note that the front 
wave speed for the lower order scheme is slower than that in 
the experiment. On the other hand, excellence performance is 
shown by the MAC+QUICK model, where the simulated 
wave hits the downstream wall at the same moment as in the 
experiment. 
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In terms of pressure peaks, it can be noticed in Fig. 9 that 
the bottom sensor P1 (3 mm from the flume’s bottom) 
records the highest value, which is approximately three times 
the hydrostatic pressure (in the experiment). Conversely, the 
pressure sensors at the higher position (P2 and P3 at 15 and 
30 mm from the flume’s bottom, respectively) experience the 
impact induced by the run-up of the flow. As for sensor P4 
(80 mm from the flume’s bottom), it does not record a direct 
impact event since it is located at the highest position. As 
compared to the experimental results, the MAC+QUICK 
model with the third-order scheme also shows closer results 
than the FLOW-3D with the first-order scheme, although 
there is some discrepancy in pressure peaks for P1. 

As shown in Fig. 9, there is a second increment in 
pressure recorded in the experiment at around t* = 6. This 
pressure increment is induced by the splashed-up wave 
collapsed downwards, causing an impact on the pressure 
sensor. However, both numerical models fail to reproduce 
the similar phenomenon as the flow becomes turbulent and 
the entrainment of air voids occurs. The abovementioned 
increment is obtained earlier in time for both numerical 
models as compared to the experiment. As for the results by 
FLOW-3D model, the induced peak pressure by the 
collapsed wave is much lower than that in the experiment.  

IV. CONCLUSIONS 

In this study, a two-dimensional numerical model has 
been developed to simulate dam-break problem based on the 
MAC method. Modifications have been made to increase the 
accuracy of the model by using the QUICK scheme to solve 
the advection terms in the momentum equation. The model 
has been shown to perform satisfactorily. However, the 
model could not reproduce the flow profile of dam-break 
problem precisely after the wave breaking and overturning. 
Further investigations on the applicability of the present 
model for other applications are necessary, in consideration 
of the limitations of MAC method. 
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