KEC Conference 2021

ISBN 978-9937-0-9019-3

NEPALI UNICODE CONVERTER WITH
PERSONALIZED TEXT PREDICTOR
USING N-GRAM MODEL

Nirajan Bist

Abhishek Karki

Department of Computer and Electronics Engineering Department of Computer and Electronics Engineering

Kantipur Engineering College
Lalitpur, Nepal
neonbest]2@gmail.com

Saugat Paudel

Kantipur Engineering College
Lalitpur, Nepal
abhishekkarkil 7@gmail.com

Prakash Thapa

Department of Computer and Electronics Engineering Department of Computer and Electronics Engineering

Kantipur Engineering College
Lalitpur, Nepal
saugatpaudel6604@gmail.com

Abstract—Nepali Unicode Converter is the simplest
and easiest way to type in Nepali Unicode. It
automatically converts Roman Nepali text into Nepali
Unicode in any of the desktop applications supporting
Unicode fonts. This Nepali Unicode is widely used in
any media, machine, or browser to support various
languages. This can be used in chatting, emailing,
messaging, and many other applications. Furthermore
with the growth in technologies and the internet,
socializing has become much easier. People around the
world spend more and more time on their electronic
devices like PCs, laptops, mobiles for social networking,
email, banking and a variety of other activities. Due
to fast paced nature of such conversation saving as
much as time possible while typing is necessary. Hence
an application that predicts the next possible words
is necessary. Predicting the most probable word for
immediate selection is useful technique for enhancing
the communication experience. The objective of this
work is to design and implement a word predictor
algorithm that suggests Nepali words that are being
used more in combination with other words of the
users, with a lower load for system and significantly
reduce the amount of keystrokes required by users. The
predictor uses methodology of the N-grams for text
prediction. This research uses Maximum Likelihood
Estimation method for making prediction table of most
probable words after each N-gram. Stupid back-off
method is used for prediction if Out of Vocabulary
sequences encountered. The training data was scraped
from various news portals and mixed into final training
data by random sampling. About 80% of the total
sentences were used for training and remaining 20%
were used for testing the model. Vocabulary Size was
46,000. Accuracy of the model was about 48% for
4-Gram model. Perplexity of the 4-Gram model reaches
down to 237.

Index Terms—Roman Nepali, Nepali Unicode, Nepali
Text Predictor, N-grams, Stupid-Backoff

KEC Conference 2021, April 18, 2021
"3rd International Conference on Engineering & Technology"
Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal

Kantipur Engineering College
Lalitpur, Nepal
prakashthapa617@gmail.com

1. INTRODUCTION

Unicode is the universally used text encoding sys-
tem that provides a unique code to every character
and symbol regardless of the platform, program and
language [1]. On the other hand, ASCII fonts are
machine dependent character encoding standard. Since
ASCII and Unicode play the identical role for English
character encoding system, document and website with
English words using either one of them does not make
different sense. However, for many languages (such
as Nepali) Unicode font is way more beneficial over
ASCIL.

People cannot type as fast as they think. As a result,
they have been forced to go through frustration of slow
communication. In the case of text entry people have to
press more keys for less number of letters. Predictive
typing applications have shown some success. Past
approaches to predictive text entry have applied text
compression methods (e.g., [2]), taking advantage of
the high level of repetition in language [3]. Other tech-
niques for predicting text includes Artificial Neural
Networks, Long Short-Term Memory, Support Vector
Machine, Machine Learning, etc. These techniques
appear to be heavy on the computer for training the
model frequently because the requirement is adaptive
model with the growth of user data. So for this research
we have used N-Gram model which is a statistical
probabilistic model which can be trained fast according
to the need of this research project.

In Natural Language Processing, the major focus is
on understanding and determining how the interaction
between human and a computer can be optimized.
As humans, we tend to use language based upon the
situation we are presented with. Selection of our next
word depends upon a set of previous words. This

249

KEC Conference 2021

ISBN 978-9937-0-9019-3

research aims to replicate a similar behavior of human
word selection into a natural language processing
model. Suggestions of new words that might be used
are generated based upon the previous set of words.
To achieve this goal, the N-grams model is used. We
assign probability to each word and select the next
word with highest probability values. This probability
values are generated based upon the sequence of
previous words. These sequences are known as N-
grams where N is the value which may be a unigram,
bigram, trigram and quad gram.

II. LITERATURE REVIEW

Unicode is an information technology standard for
the encoding, representation, and handling of text
and symbol regardless of the platform, program and
language. There are a lot of Nepali Unicode Con-
verters easily available on the internet. However, the
systems that converts Nepali Romanized words into
Unicode Nepali are not always accurate and does
not work for every Nepali words. Also, one of the
biggest hindrance is the absence of standardized Nepali
Keyboard Layout. The existing keyboard layouts are
not scientific and statistically optimized. These layouts
do not consider the basic factors like distribution of
frequency load among the keys, hand alternation, and
many other factors due to which they put excessive and
disproportionate stress on the fingers, which on long
term can cause several adverse effects. The paper by
Prajapati, Shrestha and Jha (2008) [4] analyses how the
traditional Nepali Unicode keyboard layout requires a
lot of typing effort and reduces typing speed.
Predicting the next word has been an important
technique for better communication for more than a
decade. One of the first predictive typing assistance
was the Reactive Keyboard [5], which made use of
text compression methods to suggest completions. This
approach used statistical methods. Statistical methods
generally suggest words based on word frequency lists
to complete the words already spelled out by the
user. The benefits of increased accuracy of prediction
precision cannot be confined to keystrokes saved by
the predictions. An efficient word prediction model
can improve the quality of text generated for persons
with language impairments, and those with learning
disabilities . Word prediction techniques can also be
used in order to correct typing errors, separate am-
biguous key pad sequences and provide more accurate
scanning interface features forecasts. The prediction
of letter sequences was analyzed by Shannon (1951)
[6]. He discovered that written English has high level
of repetitions. Based upon this research an obvious
question was whether users can be supported by
systems which forecast the next keystrokes, words,
or phrases while writing text. A variety of typing
tools for apraxia persons and dyslexic persons were
developed within natural language by Magnuson and
Hunnicutt [7]. These tools provide a possible list of

KEC Conference 2021, April 18, 2021
"3rd International Conference on Engineering & Technology"
Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal

words from which the user could select the required
or most approximate word. For these users it is usu-
ally more efficient to scan and choose from lists of
proposed words than to type. Scanning and selecting
skilled authors from several displayed options may, in
contrast, slow down (Magnuson and Hunnicutt 2002).
A prediction system can make more suitable word
choices for the user by exploiting the present sen-
tence context using statistical techniques. Ngrams are
Markov models that estimate words from a set of
previous words. Ngram probabilities is estimated by
counting in a corpus and calculating maximum like-
lihood estimation. The previous N1 word is used
in predicting the current (Nth) term in the Ngrams
word prediction methods. In a large corpus, known
as the training text, the Ngrams data is collected by
counting each single N word sequence. In case of
Augmented communications usage Ngrams techniques
were limited to unigram and bigram word prediction,
but in many other areas related to natural language
processing such as speech recognition and machine
translation trigram and higher Ngrams orders were
often used. [8].

Gregory W. Lesher (2001) found that the impact of
using higher-order N-grams and larger database can
decrease the number of keystrokes by 7.5 percentage
points [9].For a training text size containing 3 mil-
lion words, he found that keystroke savings increased
steadily with higher ngram orders i.e when moving
from unigram to bigram word prediction keystroke
were decreased by 6.4 percentage points and 7.5
percentage points when moving from unigram to tri-
gram, which suggests increased context-sensitivity in
prediction.

III. PROBLEM ON HAND

Typing in Unicode Nepali text should be quick and
easy. It should be effortless and explicit. However,
there are only two methods that can be used to
type in Unicode Nepali. We can either use keyboard
layouts by Madan Puraskar Pustakalaya or use Roman
Nepali to Unicode Nepali converters. But none of these
methods is good enough. People need to remember
one of the keyboard layouts for typing in Nepali
Unicode which is difficult for normal users. Using
Unicode converter solves the problem of remembering
the layouts but currently available converters are not
always accurate and does not work for every Nepali
words. Moreover, none of those methods is capable of
suggesting the next probable words for the user which
can make typing quick and easy. Increase in typing
speed saves time and enhance the communication
experience. So, to solve these issues a better Nepali
Unicode Converter that can also suggest next probable
words is necessary. In this research, we focus on
developing such kind of system that can not only
convert Roman Nepali to Nepali Unicode but also
suggests the next probable words to the user.

250

KEC Conference 2021

ISBN 978-9937-0-9019-3

IV. PROPOSED METHOD

The operation of the this research is divided into two
sections, conversion and prediction. The conversion
section deals with conversion of Romanized Nepali
text into Nepali Unicode either using the predefined
map or user defined map. If the text is not found in
any of those models, hard-coded rules are used for con-
version. The prediction section deals with suggesting
next word from user-defined or pre-defined N-gram
model.

A. Conversion

The Roman Nepali to Nepali Unicode conversion
takes place either using the user defined model
or using predefined model. The development and
operation of these models are explained below.

1) User defined Map: For the conversion of words
that a user frequently uses with their own notation, a
user defined map is created. For example: If a user
has a habit of writing “®" as cha, xa or 6, a separate
personal user defined map is created for him/her. This
map is used to assist user by increasing the typing
speed and productivity.

2) Predefined Map: Almost 40,000 Nepali words
are collected from Nepali Brihat Sabdakosh-2075
provided by Nepal Academy. Thus collected words
are then converted into English equivalent words
using reverse mapping rules. The mapped words are
then stored in a JSON file. For Example:

- nepali
- pani
1t - sathi

JSON file format: { "nepali":"ﬁ'CI'IF‘ﬁ", ”pani”:"tI'IT-ﬂ",
et sathit,......... }
Also, the reverse dictionary for stop-words like @r,
dIc, g, etc., and loanwords like LR, g%lﬁﬂ?,

, etc., is created and stored in a JSON file.

3) Static Rules: If any of the maps stated above
does not work for a text, the last option for the
Nepali Unicode conversion is hard-coded rules. It uses
predefined static rules to convert Roman Nepali into
Nepali Unicode. The static rules used are:

au: of i: k:
: | kh: %
ee:é g: 7
: u:3d gh:d9
Uu: % ng:s
: 00: % ch:d
: e:U X: 8
s o ai:ﬁ chh: 9
o o:3f jool
: a:3l au: 3 z:9
ai: A 3T c: P
o:al aa: 3l q:d

KEC Conference 2021, April 18, 2021
"3rd International Conference on Engineering & Technology"
Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal

jh: < Th:Y v:Yy Sh: ¥
yn : 9l D: & bh:Y s: 9

t: < Dh: ¥ m:H h:g

th: o n: y: g ksh: &
d:s p:d r:x jn:

dh:@ f:% [:d gny : X
N:TT ph: % w:d gy:
T:d b:d sh: X[

Note: °|’ is zero width joiner and ’||” is zero width
non joiner.
Letters other than mentioned above (e.g. ., ”,
?, / ,etc.) are inserted as it is.

Start

Roman Nepali Text

Check
Userdefined
Map

Check
Predefined
Map

No

End " . Conversion
Nepali Unicode Using Static
Rules

End { Nepali Unicode ;

Fig. 1: Flowchart for Roman Nepali to Nepali Unicode
conversion

B. Prediction

The prediction section deals with suggesting next
word from N-gram model based on previous text
inputs by the user and pre-trained map. This section
is further divided into two sub-sections. Each of those
sections are explained below.

1) Predefined Model: To create a predefined model,
corpus was created using the data scrapped from
Ghumphir, Kinmel, Opinion, Politics, Social and
Sports section of Nepali News portal Setopati.com.
Data collected are cleaned before making the model.
Here are the steps involved to create predefined model:

I. Data Collection.

II. Data Cleaning and Pre-processing.
a) Load the data and remove the unwanted
characters(noise) from the data.
b) Tokenize the data i.e. make tokenized sen-
tences.

251

KEC Conference 2021

ISBN 978-9937-0-9019-3

c) Split the tokenized sentences into train and
test sets.
d) Replace words with a low frequency by an
unknown marker <unk>.
e) Build a closed vocabulary which consists
of unique words from the training data set.
II. N-gram Model Generation using Maximum
Likelihood Estimation.
a) Compute the count of n-grams from a
training data set.
b) Estimate the conditional probability of a
next word with k-smoothing.
¢) Use Maximum Likelihood Estimation
model to suggest next word.
IV. Evaluate the N-gram models by computing the
accuracy and perplexity score.

Data Collection: The data which is a corpus of
Nepali Unicode sentences scraped from Ghumphir,
Kinmel, Opinion, Politics, Social and Sports section
of Nepali News portal Setopati.com using Beautiful
Soup.

File Name | File Size | Word Count
Predefine | 26.5 MB 100307
Sabdakosh | 706 KB 35000
Stopwords 5 KB 350
Loanwords | 149 KB 560

Data Cleaning and Pre-processing: The data col-
lected is cleaned before using it further. The data
cleaning process include following steps:

I. Removing non-Nepali text

II. Removing numbers

III. Removing punctuation, marking end of sen-
tences

IV. Removing nonfunctional marks

V. Normalizing white space
VI. Removing links

Then the data made into tokenized sentences. Thus
obtained data is split into two separate training and
testing data sets. 80% of the data was allocated for
training the model and remaining 20% data was made
for testing the model. From the training data, vocab-
ulary, a list of unique words reaching the threshold
count is made. For example, for the threshold is kept 2,
the words whose count is less than 2 are not included
in the vocabulary. This helps in reducing the number
of n-grams.

Handling Out of Vocabulary’ Words: If the model
encounters a word that it never saw during training, it
won’t have an input word to help it determine the next
word to suggest. The model will not be able to predict
the next word for the user because there are no counts
for the current word. This 'new’ word is called an
"unknown word’, or Out Of Vocabulary words(OOV).
To handle unknown words during prediction, we use a
special token *<unk>’ to represent all unknown words.

Using the vocabulary, the training and testing data
is curated with the <unk> token for each OOV word.

KEC Conference 2021, April 18, 2021
"3rd International Conference on Engineering & Technology"
Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal

N-gram model Generation: An N-gram is a con-
nected string of N items from a sample of text or
speech. The N-gram consists of large blocks of words,
or smaller sets of syllables.

A,

N = 1 - YT e [ga R [anigrams: =
o
o gL
fic gl
due

| aum s w
N = 3 : [T0TeT [Ueh (g [a=T| & | trigrams: ™= 2

N o e a

N = 2 : [F1UTel [Ueh| G BT T | bigrams:

Fig. 2: Example of N-gram Generation

The above example shows how the N-grams are
formed. The frequency of each N-gram is kept in
their separate frequency table or dictionary. Thus we
get frequency table of unigrams, bigrams, trigrams,
quadgrams and pentagrams.

The probability of nth word depends on the n-1
words. For a trigram model (n = 3), for example, the
probability of each words depends on the two words
immediately before it.

Training the n-gram model is done by calculating
conditional probabilities from the training data.

The conditional probability for the word at posi-
tion ’t’ in the sentence, if the words before it are
Wy_1, W_9...Ws_p 18:

(1

We can estimate this probability by counting the
occurrences of these series of words in the training
data.

> C(wys—_1...wp_ , W,
P(wiwi—1...wi—p) = (C(tu;tll tw:i)n)

P(wt |wt_1...wt_n)

@)

where:

The function C(...) denotes the number of oc-
currence of the given sequence and is retrieved from
the previously made frequency tables for the given
sequence(n-gram).

P means the estimation of P.

The following example shows the probability calcu-
lation of a word in a trigram model: Given sentence:

AT Th GaX o=/

PR/ TP G) = C(T R &) / C(TP
gaX)

Maximum Likelihood Estimation: MLE is an esti-
mation of the parameters of a probability distribution
by maximizing a likelihood function, so that the as-
sumed statistical model of the observed data is most
probable.

It estimates the model parameters such that
the probability is maximized. In practice,
we simply count the occurrence of word

252

KEC Conference 2021

ISBN 978-9937-0-9019-3

patterns to calculate the maximum likelihood
estimation of P(wi|wi—1,wi—o...wi—y,). Here,
Wi w1, Ws—a...ws—p i the sequence of words and
’t’ is the position of the word in the sentence.

Unigram Model:

P(w,) = Z?‘C”ZU) (3)
Bigram Model:
Plunfuns) = S gt @)
Trigram Model:
P(wilwy 1, w—2) = Olwia, w1, wr) (%)

Zw C(wt 2, Wt—1,W)

Prediction Table for Suggestions: Using MLE for-
mulas, probability tables are created for each of the
unigram, bigram, trigram and quadgram models. They
are used to evaluate the models and to find which word
is most likely to appear next. The suggestions for each
N-gram are sorted in descending order based on their
conditional probability.

Stupid Backoff Algorithm in Use: When the N-gram
is encountered in the model in course of suggestion,
the word with the highest probability for the encoun-
tered N-gram is the best next word and hence it is
suggested. But if the N-gram is not found in the current
model then the lower order N-gram model is used for
suggestion. This is called Stupid back-off algorithm.
That is, if the given sequence after which a word is to
be predicted is not present in a higher-order N-grams,
the first word is removed and we back off to a lower-
order N-gram.

The figure above is the block diagram showing
the steps followed to generate prediction tables. N-
Grams model is generated using the train corpus.
Using unigrams, bigrams, trigrams and quad grams
in N-Gram model, prediction tables are generated for
Maximum Likelihood Estimation.

Sample Ngram Model Prediction Tables:

For unigram: A& ' : [(% /, 0.085), (&, 0.046),.]
For bigram: (FTH¥d /, &), : (B, 0.051), (TS,

0.025),..] 5
L, S)

For trigram: ('
(TGIETE, 0.035),.]

For quadgram: (W’ & g, G

0.021), (TgIdTS,, 0.015),..]

Atmost 3 probable next words for each gram are
included in the prediction table.

(G, 0.056),

[(RYRPT,

2) User defined Model: During the period of using
the program, user can manually add the words if not
predicted by the predefined model. Everything the user
types, it is stored in a user’s personalized corpus. This
corpus is used to train another personalized N-gram

KEC Conference 2021, April 18, 2021
"3rd International Conference on Engineering & Technology"
Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal

Scrapping Data
from
setopati.com

!

Data Cleaning
and
Preprocessing

!

Train Corpus

!

Generating
N-Gram Model

!

N-Gram Models
(Unigram, Bigram,
Trigram and Quadgram)

1

Generating
Prediction Tables
(MLE)

I
{ I])

Continuation
after 1 word

Most Likely
Continuation
after 2 words

Most Likely
Continuation
after 3 words

Most Likely
Continuation
after 4 words

Fig. 3: Generating prediction tables by applying
NGrams model

model following the same steps as pre-defined model
except the data collection step, as the corpus for train-
ing this model is readily available from the previously
stored user data. The more user uses the program, the
better it knows about the sequence or patterns of the
users text and hence gives better predictions in long

Handle
Unknown(OOV)
Word

Fig. 4: Generating prediction tables by applying N-
Grams model

253

KEC Conference 2021

ISBN 978-9937-0-9019-3

V. PERPLEXITY

The equation 2 doesn’t work when a count of
an n-gram is zero. Let’s assume that the application
encounters an n-gram that did not arise in the training
data. Then, the equation 2 cannot be evaluated (it
becomes zero divided by zero). To handle zero counts
k-smoothing is performed.

K-smoothing adds a positive constant k£ to each
numerator and £*| V| in the denominator, where |V] is
the number of words in the vocabulary.

. Cwi—1--W—n,wn) + k
P —1--Wt—p) =
(we|we—1...we—n) C(wi—y..wi—n) + k[V|

(6)

For n-grams that have a zero count, the equation 6
becomes \71| This shows that any n-gram with zero
count has the probability of \%I

In practice we do not use raw probability as our met-
ric for evaluating language models, but a variant called
perplexity, a measurement of how well a probability
distribution or probability model predicts a sample. If
a language model can predict the words that did not
occur in the test set, i.e., the P(a sentence from a test
set) is highest; then such a language model is more
accurate [10]. For a test set w;_1, W_s...wW_p:

1

P(wt |wt_n...wt_1)

rrw)= | T

t=n-+1

(N

where; N is the length of the sentence.
n is the number of words in the n-gram (e.g. 2 for a
bigram).

The Equation 7 easily creates numerical underflow.
The product of small probabilities quickly rounds off
to zero. This formula below is equivalent to the one
above, and solves the issue.

ZiV:nJrl log(P(wg|wi—p...wi—1))
N)

PP(W) = exp(—

Note that because of the inverse in Equation (3.7),
the higher the conditional probability of the word
sequence, the lower the perplexity. Thus, minimizing
perplexity is means maximizing the test set probability
of the language model.

VI. ACCURACY

Accuracy is the closeness of the measured value to
a standard or true value. Accuracy of N-Gram model
is measured using following equation.

NumberO fCorrectPrediction
Total NumberO f Prediction

Accuracy = ©)
Higher the accuracy, better the model predicts the next
probable word.

KEC Conference 2021, April 18, 2021
"3rd International Conference on Engineering & Technology"
Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal

VII. ResuLr
From 100,000 total words, about 80% (80,000)
words were used as training data where remaining
20% (20,000) sentences were used for evaluating the
models in terms of accuracy and perplexity.

Grams | Accuracy
1-Gram 0.299
2-Gram 0.384
3-Gram 0.457
4-Gram 0.486

Accuracy of N-Gram Model

0.9
0.8
0.7

S 06

5 05

3

& 04 /—’/"—_'
03

0.2
0.1
0

Grams

Fig. 5: Plot of accuracy of model

With increase in length of N-gram the accuracy of
the model increases. The accuracy of 1-gram, 2-gram,
3-gram and 4-gram model was evaluated to 29.9%,
38.4%, 45.7% and 48.6% respectively. The accuracy
increases with increase in length of N-gram as ex-
pected because of the increase in available knowledge
of previous text which helps in predicting next word
which is more probable in the local context.

Perplexity of Model

~
[e%)
Perplexity
H
o
o

Grams
Fig. 6: Plot of perplexity of model

With increase in length of N-gram the perplexity
of the model decreases as expected. The perplexity
of l-gram, 2-gram, 3-gram and 4-gram model was
evaluated to 573, 602, 397 and 237 respectively.

VIII. CONCLUSION

A quick, simple and flexible Unicode Converter is
very essential and productive. This type of application
is very useful in saving human efforts. It is widely
usable in any media, machine or browser for chatting,

254

KEC Conference 2021

ISBN 978-9937-0-9019-3

emailing, messaging, writing documents and many
others.

N-Grams being a fairly simple language model turns
out to be pretty straightforward and useful for real
time prediction and model formation. The accuracy of
the model can be seen improving as the value of N-
Grams increases. The accuracy of our trained model
reaches upto 48%. Similarly perplexity of the trained
model decreases with the increase of length of N-
gram. Building a 5-grams model; avoiding pruning
when while training the models; or more powerful
smoothing algorithms than ’stupid back-oft” can be ap-
plied for increase the accuracy of the model. However,
with the increase in size of model also increases the
prediction time. Hence the trade-off between accuracy
and speed needs to be considered while enhancing the
model.

REFERENCES

[1] M. Reading and A. Wesley, “The unicode consortium. The
unicode standard, version 4.0,” 2003.

[2] Tan H. Witten, A. Moffat, and T. C. Bell, “Compressing and
indexing documents and images,” in Managing Gigabytes,
1999.

[3] T Stocky, A. Faaborg, and H. Lieberman, “A commonsense
approach to predictive text entry,” in MIT Media Laboratory,
2004.

[4] C. Prajapati, J. D. Shrestha, and S. Jha, “Nepali unicode
keyboard layout standarization based on genetic algorithm,”
p. 2, 2008.

[5] L. H. Witten. John J. Darragh, and M. L. James, “The reactive
keyboard: A predictive typing aid.,” pp. 41-49, 1990.

[6] C. Shannon, “Prediction and entropy of printed english,” in In
Bell Systems Technical Journal, pp. 50-64, 1951.

[7] T. Magnuson and S. Hunnicutt, “Measuring the effectiveness
of word prediction: The advantage of long term use,” in
Technical Report TMHQPSR, p. 43, 2002.

[8] J. Dumbali and N. Rao, “Real time word prediction using
ngrams model,” in International Journal of Innovative Tech-
nology and Exploring Engineering, vol. 8, 2019.

[9]1 G. Lesher, B. Moulton, and J. Higginbotham, “Effects of
ngram order and training text size on word prediction,” 12
2001.

[10] D. Jurafsky and J. H. Martin, “Ngram language models,” in
Speech and Language Processing, 2019.

KEC Conference 2021, April 18, 2021
"3rd International Conference on Engineering & Technology"
Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal

255

	nepali_unicode.pdf (p.21-27)

