TRIBHUVANUNIVERSITY INSTITUTE OF ENGINEERING KANTIPUR ENGINEERING COLLEGE

Model Questions for B E Entrance Test (2074)

Set: 3 ((A)	Time: 2 hou	Irs Date: 2	074/03/10
Sectior	n: I Select the Best Alter	rnative on the answer s	heet given	60×1 = 60
1.	The pair has (A) hate, hat	the same pronunciation. (B) gait, gate	(C) beat, bit	(D) lead, lid
2.	Which of the following (A) privilege	words has its primary sta (B) private	ress on the second syllab (C) priority	le? (D) principle
3.	No one wants to jeopard (A) endanger	<u>dize</u> his career. The syno (B) wear away	nyms of the underlined v (C) belittle	vord is (D) unbalance
4.	It is not possible to (A) instigate	the suffering. (B) propitiate	(C) masticate	(D) mitigate
5.	The boy said to his siste (A) The boy said to his (B) The boy told his sis (C) The boy told his sis (D) The boy told his sis	er, "Don't try to be funny sister not to try to be fun ter not try to be funny. ter to try to be funny. ter not to try to be funny	"." The indirect speech of ny.	f this sentence is
6.	Which of the following (A) If I saw him, I will (C) If I see him, I would	is acceptable? call him. l call him.	(B) If I saw him, I calle (D) If I saw him, I wo	d him. uld call him.
7.	Which one of the follow (A) Neither Hari nor his (C) Neither Hari nor his (D) Neither Hari nor his	ving is correct? s brother has a book. (B) s brother have read the be s brother have a book.	Neither Hari nor his bro ook.	ther have had a book.
8.	Which of the following (A) sleep off	is not acceptable? (B) get off	(C) put off	(D) see off
9.	I am really tired, (A) aren't I	? (B) amn't I	(C) am I not	(D) am not I
10.	A state in which all relig (A) democratic	gions are equal is called (B) kingdom	(C) secular	(D) religious
11.	The president presided (A) at	(B) in	(C) over	(D) at
12.	Which of the following (A) They told me not to (C) He asked me where	is incorrect? speak loudly. I was going?	(B) She congratulated h(D) Ram wished me go	im. od morning.
13.	Neither of the boys had (A) their	homework cl (B) his	necked. (C) her	(D) hers
14.	They that the (A) says	ey had already finished t (B) said	heir meal. (C) had said	(D) has said
15.	The quantum number va (A) $n = 3, 1 = 0$	alues of the designation $(B) n = 3, 1 = 2$	3d are (C) n = 3, 1 = 1	(D) $n = 3, 1 = 3$
16.	Mass of 0.1 mole of CH (A) 1 g	I ₄ is (B) 1.6 g	(C) 16 g	(D) 0.1 g
17.	pH of 0.0001 M HCl = (A) 4	is (B) 2	(C) 6	(D) 7

18.	If three electrons are los (A) 0	st by a metal ion M^{3+} , its (B) + 4	s final oxidation number (C) + 6	would be $(D) + 5$
19.	Lithium shows the diag (A) Na	onal relationship with (B) Al	(C) Si	(D) Mg
20.	If red hot steel rod is su (A) soft and malleable	ddenly immersed in wate (B) fibrous	er, the steel becomes (C) tough and ductile	(D) hard and brittle
21.	The bond angle of H-N (A) 107.8°, Pyramidal (C) 120°, Triogonal bip	-H in ammonia molecule yramidal	e and structure are (B) 90 °, Tetrahedral (D) 109 ° 28', Trigonal	
22.	Oxidation number of ch (A) 4	llorine in ClO ₃ ⁻ is (B) 6	(C) 5	(D) 7
23.	The waste material in a (A) matte	n ore is called (B) gangue	(C) flux	(D) mineral
24.	Nitrates of all metals ar (A) unstable	e (B) soluble in water	(C) coloured (D) ins	oluble in water
25.	Nitration of benzene is (A) nucleophilic addition (C) electrophilic addition	on on	(B) nucleophilic substitution(D) electrophilic substitution	
26.	Isopentane and neopent (A) metamers	ane are (B) position isomers	(C) chain isomers	(D) tautomers
27.	If a current is passed in (A) gets compressed	a spring, it (B) remains same	(C) oscillates	(D) gets expanded
28.	If an electron has an in of the electron is (A) an ellipse	itial velocity is perpendid(B) a straight line	cular to the direction of (C) a circle	electric field, the path (D) a parabola
29.	The sensitivity of moving coil galvanometer can be increased by decreasing(A) the magnetic field(B) The couple per unit twist of suspension(C) the area of the coil(D) the number of turns in the coil			ing twist of suspension s in the coil
30.	The motion of projectile (A) oscillatory with SH (C) oscillatory but not S	e is represented by y = R M SHM	 sin (ωt+φ). The motion (B) uniform circular motion (D) neither oscillatory in 	is otion nor SHM
31.	The dimension of impu (A) $[M^0L^3T^{-1}]$	lse is (B) [ML ² T]	(C) [MLT ⁻¹]	(D) $[M^{-1}LT^{-1}]$
32.	A particle is orbiting in (A) directed horizontall (C) tangential to the orb	vertical plane, its mome y pit	ntum will be (B) directed vertically (D) at 60° to the vertica	1
33.	Absolute temperature o (A) the speed of the gas (C) the momentum of the	f the gas is determined b ne molecules	y (B) ther.m.s. velocity o (D) the number of mole	f the molecules ecules in the gas
34.	A musical scale is com- octave which (A) form a geometric pr (C) form an arithmetic	structed by providing int rogression progression	termediate frequencies b (B) form a harmonic pr (D) bear a simple ratio	etween a note and its ogression with their neighbors
35.	In young's double slit between the slits and sc (A) quadrupled	experiment, the separatic reen is doubled. The frin (B) unchanged	on between the slits is ha age width is (C) halved	alved and the distance (D) doubled

36.	A ray of light travel from air at an angle refractive index of th (A) 1.3	ling in a transparent mer of incidence 45°. The ray e medium with respect to (B) 1.6	dium falls on a surface ys undergoes total interna air, the possible value of (C) 1.4	separating the medium al reflection. If n is the n is (D) 1.8
37.	If $A \subseteq B$, $\overline{B} - \overline{A}$ i	$(\mathbf{P}) \overline{\mathbf{P}}$	$(C) \wedge \mathbf{P}$	(\mathbf{D})
	(A) A		$(C) \mathbf{A} - \mathbf{B}$	(D) ψ
38.	The general solution π	of $2\cos^2 x + \sin x \cos x - \sin x \cos x - \sin x \cos x + \sin $	$\sin^2 x = 0$ is π	π
	(A) $n\pi + \frac{\pi}{4}$	(B) $2n\pi \pm \frac{\pi}{4}$	(C) $n\pi - \frac{\pi}{4}$	(D) $n\pi + \frac{\pi}{6}$
39.	The value of 'a' for v	which the vectors $3\vec{i} + 4a\vec{j}$	$\vec{i} + \vec{k}$ and $-2\vec{i} + \vec{j} + \vec{k}$	$5\vec{k}$ are orthogonal is
	(A) $\frac{-11}{4}$	(B) $\frac{7}{13}$	(C) $\frac{-2}{7}$	(D) $\frac{-3}{2}$
40.	The equation of the s + 7 = 0 and having in (A) $x = 2$	traight line passing through finite slope is $(B) = 3$	gh the intersection of $3x$	-y + 2 = 0 and $5x - 2y$
41	$(\mathbf{A}) \mathbf{x} = \mathbf{z}$	$(\mathbf{D}) \mathbf{X} = \mathbf{S}$	$(C) \mathbf{x} + \mathbf{y} = \mathbf{y}$	(D) X = 4
41.	(A) 1	(B) 3	(C) 5	(D) 7
42.	If A. adjA= $\begin{pmatrix} 10 & 0\\ 0 & 10 \end{pmatrix}$), then $ A $ equals		
	(A) 10	(B) 0	(C) 100	(D) 2 × 10
43.	The value of k for wh (A) 3	(B) 2	$\begin{array}{l} \text{(c) } 3x^2 + 7x + 6 - k = 0 \\ \text{(c) } 6 \end{array}$) is equal to zero is (D) -5
44.	$\lim_{x\to\infty} x \tan\frac{1}{x}$ is			
	(A) 1	(B) ∞	(C) 0	(D) -1
45.	The differential coeff (A) – cotx	ficient of sinx with respec (B) 2 tan x	t to cosx is (C) 2 cot x. cosecx	(D) cos x. sinx
46.	The value of $\int_{-\pi}^{\pi} \sin^2 \frac{1}{2}$	$fx \cos^2 x dx$ is		
	(A) $\frac{\pi^4}{2}$	(B) 1	(C) $\frac{\pi^4}{4}$	(D) 0
47.	Which of the followi (A) injector	ng controls air fuel ratio i (B) carburetor	n petrol engine? (C) choke	(D) All of the above
48.	Biogas is mainly use (A) automobiles	d as (B) lighting purpose	(C) heating purpose	(D) none
49.	Which of the followi (A) Marsyangdi	ng is the smallest power p (B) Trisuli	plant? (C) Kaligandaki	(D) Kulekhani
50.	Wattmeter measures. (A) active power	(B) effective power	(C) apparent power	(D) both a and b
51.	A natural material of (A) brick	construction obtained from (B) iron	om rocks by any suitable (C) timber	method is called. (D) stone
52.	Refractory bricks res	ist		
53.	(A) higher temperatu The dis-continuous v do-not cross	re (B) chemical action white line in between lane (B) don't turn	(C) dampness (D) lo s indicatethe lane. (C) may cross	(D) all of the above
		3		

(3A)

54. The Upper Tamakoshi 456 MW(under-construction			ion) Power Plant is in district.		
	(A) Dolakha	(B) Sindhupalchowk	(C) Ramechhap	(D) Makwanpur	
55.	MAN stands for (A) metropolitan area n	 etwork	(B) metropolita	n answer network	
	(C) medium area netw	ork	(D) middle area	n network	
56.	Which of the following	contains highest memory	y?		
	(A) Tera bit	(B) mega byte	(C) kilo byte	(D) Giga byte	
57.	FTTP represents	(B) Hyper text	(C) protocal	(D) LiNc	
-0			(c) protocul		
58.	Zener diode is connecte (A) series	(B) across	 (C) depends up	on situation (D) parallel	
59.	Which of the following (A) mouse	is sequential device? (B) magnetic tape	(C)pen drive	(D) printer The OR gate	
60.	The thickness of a 50 H (A) 0.35 cm	z transformer lamination (B) 0.30cm	n is (C) 0.33 m	(D) 0.35 mm	

Section: II Select the Best Alternative on the answer sheet given

 $40 \times 2 = 80$

Read the passage and answer the questions from 61 to 64.

Experiments with the sulphonamides have made clear a fact about germs which is gaining increasing importance in fighting them. Germs, it seems, have the same ability as all the other living things gradually to change themselves to suit new conditions. But, as the generation of germs lasts only twenty-five or thirty minutes, before all the germs divide to form new ones, changes that would take many years in animals can be achieved by germs in a few hours. Perhaps, then, you give the attacking germ a dose of sulphonamides which upsets them somewhat but is not strong enough to prevent them from multiplying; if so, they very rapidly develop new powers which enable them to resist the effects of the drug. After this has happened, even the strongest dose will fail to disturb them.

61.	Like all living things, g possible because the ge	erms can change	themse	lves to suit new o	condition	ns. This adjustment i	IS
	(A) the power of adapta(C) the power of adopta	ıbility ıbility	(B) the (D) the	power of compli- power of fluctua	ance ation		
62.	Since germs can change become (A) absolutely impossib (C) much more difficult	ge themselves to ble t) suit no (B) mu (D) inc	ew conditions, th ch easier reasingly importa	ne task (ant	of fighting them ha	IS
63.	Germs which are not d said to have become (A) immune	isturbed even by (B) immortal	the stro	ongest possible d (C) improvised	ose of th	ne sulphonamides ar (D) immobile	e
64.	One generation of germ (A) in not more than ha (C) in twenty minutes	is expires, bringi lf an hour	ng into e	(B) in twenty-fi (D) in a few how	t generat ve minu urs	ion tes	
65.	IUPAC name of isohex (A) 2-methyl hexane	ane is (B) 2-methyl p	pentane	(C) 3-methyl pen	tane	(D) 4-methyl pentan	ie
66.	The gas formed by hydr (A) producer gas	rolysis of alumin (B) marsh gas	ium car	bide when passed (C) laughing ga	l into ste s	am can form (D) water gas	
67.	An electric current is p copper sulphate, silver while 1.25 g of copper 1 (A) 5 g	bassed through the r nitrate and potate being deposited?	nree cell assium i	s in series contai odide. What weig	ining res ght of io	spectively solution of dine will be liberate	of d
		(-) · 8				(2) 10 8	

68.	The normality of a solu (A) 1 N	tion containing 32.5 g o (B) 10 N	f (COOH) ₂ . 2H ₂ O per 0. (C) 2N	5 L is (D) 0.1 N
69.	Given that $F = at + bt^2$, (A) LT ⁻² and T ⁻²	where F denotes force, (B) T and T ⁻²	t time, then dimensions o (C) MLT ⁻³ and MLT ⁻⁴	f a and b are (D) LT^{-1} and T $^{-2}$
70.	The equation of motion	of a projectile is $y = 12$	$x - \frac{3}{4}x^2$. The range of pr	ojectile is
	(A) 36 m	(B) 21 m	(C) 16 m	(D) 48 m
71.	If the momentum of a	body is increased by 50)% then the percentage i	ncreases in its kinetic
	(A) 50%	(B) 100%	(C) 200%	(D) 125%
72.	A stone is dropped into heard by man often.	a lake from a tower of	500 m height. The sound	d of the splash will be
_	(A) 11 sec	(B) 14 sec	(C) 4 sec	(D) 11.5 sec
73.	A steel tape measure is reading of tape will be $(A) 0.99988$ km	accurate at 20°C. It is u (α for steel = 12 x 10 ^{-60 c} (B) 1 00012 km	sed at 10° C to measure a $^{\circ}$ C $^{-1}$)	distance of 1 km. The $(D) \perp 00024$ km
74	(A) 0.99900 MII	(B) 1.00012 Km		(D) 1.00024 KIII
/4.	(A) 10%	(B) 100%	(C) 75%	(D) 50%
75.	The electric potential a	s a function of distance i	is given by $v = 5x^2 + 10x$	x - 9 volt. The electric
	(A) -23 v/m	(B) 6 v/m	(C) 11 v/m	(D) – 20 v/m
76.	A 4µF capacitor is cha	arged to 400 V and the	n its plates are joined th	rough a resistance of
	1kΩ. The heat produced (A) 0.16 J	d in the resistor is (B) 1. 28 J	(C) 0.64 J	(D) 0.32 J
77.	A wire has a resistance resistance will be	ce 10 Ω . It is stretched	d by one-tenth of its or	iginal length then its
	(A) 10 Ω	(B) 12 Ω	(C) 9 Ω	(D) 11Ω
78.	A straight wire of len magnetic field of induc The force on the wire is	igth 0.5 m and carrying tion 2 T. The magnetic	g a current of 1.2 A is field is perpendicular to	placed in a uniform the length of the wire.
	(A) 2.4 N	(B) 3 N	(C) 1.2 N	(D) 2 N
79.	A step up transformer	operates on a 230 V lin	a and arranliad a arran	
	primary and secondary	windings is 1:25. The	primary current is	t of 2 A. The ratio of
	(A) 50 A	windings is 1:25. The (B) 12.5 A	primary current is (C) 8 A	t of 2 A. The ratio of (D) 25 A
80.	(A) 50 A An air bubble in glass thickness of slab is	windings is 1:25. The (B) 12.5 A slab(μ =1.5) from one s	primary current is (C) 8 A ide is 6 cm and from ot	t of 2 A. The ratio of (D) 25 A her side in 4 cm. The
80.	(A) 50 A An air bubble in glass thickness of slab is (A) 15 cm	windings is 1:25. The (B) 12.5 A slab(µ=1.5) from one s (B) 12 cm	ide is 6 cm and from ot (C) 10 cm	t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m
80. 81.	An air bubble in glass thickness of slab is (A) 15 cm The intensity ratio at a between their amplitud	windings is 1:25. The (B) 12.5 A slab(μ =1.5) from one s (B) 12 cm a point of observation d	ide is 6 cm and from ot (C) 10 cm (C) 10 cm	 t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m es is 100:1. The ratio
80. 81.	 primary and secondary (A) 50 A An air bubble in glass thickness of slab is (A) 15 cm The intensity ratio at a between their amplitude (A) 1:1 	windings is 1:25. The (B) 12.5 A slab(μ =1.5) from one s (B) 12 cm a point of observation d es is (B) 10:1	ide is 6 cm and from ot (C) 8 A (C) 10 cm (C) 10 cm (C) 1:100	t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m es is 100:1. The ratio (D) 1:10
80.81.82.	 primary and secondary (A) 50 A An air bubble in glass thickness of slab is (A) 15 cm The intensity ratio at a between their amplitude (A) 1:1 If a sample o 16 gm rate 	windings is 1:25. The (B) 12.5 A slab(μ =1.5) from one s (B) 12 cm a point of observation d es is (B) 10:1 dioactive substance disin	ide is 6 cm and from ot (C) 8 A (C) 10 cm (C) 10 cm (C) 1:100 (C) 1:100 (C) 1:100	 t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m es is 100:1. The ratio (D) 1:10 ays, then what will be
80. 81. 82.	 primary and secondary (A) 50 A An air bubble in glass thickness of slab is (A) 15 cm The intensity ratio at a between their amplitude (A) 1:1 If a sample o 16 gm rate the half-life of the samp (A) 15 days 	windings is 1:25. The (B) 12.5 A slab(μ =1.5) from one s (B) 12 cm a point of observation d es is (B) 10:1 dioactive substance disinple? (B) 7.5 days	ide and supplied a current primary current is (C) 8 A ide is 6 cm and from ot (C) 10 cm lue to two coherent wav (C) 1:100 ntegrate to 1 gm in 120 d (C) 30 days	 t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m es is 100:1. The ratio (D) 1:10 ays, then what will be (D) 60 days
80.81.82.83.	 primary and secondary (A) 50 A An air bubble in glass thickness of slab is (A) 15 cm The intensity ratio at a between their amplitude (A) 1:1 If a sample o 16 gm rate the half-life of the samp (A) 15 days The energy required to (A) 13.6 eV 	windings is 1:25. The (B) 12.5 A slab(μ =1.5) from one s (B) 12 cm a point of observation d es is (B) 10:1 dioactive substance disinple? (B) 7.5 days remove an electron in hy (B) 1.36 eV	ide is 6 cm and from ot (C) 8 A (C) 10 cm (C) 10 cm (C) 1:100 (C) 1:100 (C) 1:100 (C) 30 days (C) 30 days ydrogen atom from n = 14 (C) 0.0136 eV	t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m es is 100:1. The ratio (D) 1:10 ays, then what will be (D) 60 days 0 slate is (D) 0.136eV
 80. 81. 82. 83. 84. 	 primary and secondary (A) 50 A An air bubble in glass thickness of slab is (A) 15 cm The intensity ratio at a between their amplitude (A) 1:1 If a sample o 16 gm rate the half-life of the samp (A) 15 days The energy required to (A) 13.6 eV The domain and range 	windings is 1:25. The (B) 12.5 A slab(μ =1.5) from one s (B) 12 cm a point of observation d es is (B) 10:1 dioactive substance disin- ble? (B) 7.5 days remove an electron in hy (B) 1.36 eV of $\sqrt{4-x^2}$ are	ide is 6 cm and from ot (C) 8 A ide is 6 cm and from ot (C) 10 cm lue to two coherent wav (C) 1:100 ntegrate to 1 gm in 120 d (C) 30 days ydrogen atom from n = 1 (C) 0.0136 eV	t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m es is 100:1. The ratio (D) 1:10 ays, then what will be (D) 60 days 0 slate is (D) 0.136eV
 80. 81. 82. 83. 84. 	 primary and secondary (A) 50 A An air bubble in glass thickness of slab is (A) 15 cm The intensity ratio at a between their amplitude (A) 1:1 If a sample o 16 gm rad the half-life of the samp (A) 15 days The energy required to (A) 13.6 eV The domain and range (A) [0, 2], [0, 2] 	windings is 1:25. The p (B) 12.5 A slab(μ =1.5) from one s (B) 12 cm a point of observation d es is (B) 10:1 dioactive substance disinple? (B) 7.5 days remove an electron in hy (B) 1.36 eV of $\sqrt{4-x^2}$ are (B) [-2, 2], [0,2]	(C) 30 days (C) R, [0,2]	t of 2 A. The ratio of (D) 25 A her side in 4 cm. The (D) 18 m es is 100:1. The ratio (D) 1:10 ays, then what will be (D) 60 days 0 slate is (D) 0.136eV (D) [0,2], [0,4]

- 85. In $\triangle ABC$, if a = 4, b = 3 and $A = 60^{\circ}$, then C is the root of the equation (A) $x^{2} + 3x - 7 = 0$ (B) $x^{2} + 3x + 7 = 0$ (C) $x^{2} - 3x + 7 = 0$ (D) $x^{2} - 3x - 7 = 0$
- 86. Let $\vec{a}, \vec{b}, \vec{c}$ be the three vectors such that $\vec{a}.(\vec{b}+\vec{c}) = \vec{b}.(\vec{c}+\vec{a}) = c.(\vec{a}+\vec{b}) = 0$ and $|\vec{a}| = 1, |\vec{b}| = 4, |\vec{c}| = 8, then |\vec{a}+\vec{b}+\vec{c}|$ is (A) 9 (B) 81 (C) 16 (D) 5
- 87. Slope of the lines represented by $x^2 + hxy + 2y^2$ are such that one is double of other, then h equals

(A)
$$\pm \sqrt{2}$$
 (B) $\pm \sqrt{3}$ (C) ± 3 (D) $\frac{1}{\sqrt{3}}$

88. A circle touches the x-axis and cuts off a constant length 2l from y – axis, then the locus of its centre is

(A)
$$y^2 = 2x^2 - l^2$$
 (B) $x^2 + y^2 = l^2$ (C) $y^2 = x^2 + l^2$ (D) $y^2 = x^2 + \frac{l^2}{2}$

89. The equation of the directrix of the parabola $5y^2 = 4x$ is (A) 5x + 1 = 0 (B) 4x + 1 = 0 (C) 4x - 1 = 0 (D) 5x - 1 = 0

90. A plane π makes intercepts 4 and 3 respectively on x-axis and z-axis. If it is parallel to y-axis, then its equation is (A) 3z + 4x = 12 (B) 3x + 4z = 12 (C) 3y + 4z = 12 (D) 3z + 4y = 12

91. If the 3^{rd} term of G.P is 4, then the product of first 5 terms is (A) 4^3 (B) 4^4 (C) 5^4 (D) 4^5

92. The value of
$$\frac{(-1+\sqrt{3}i)^{3n}}{2} + \left(\frac{-1-\sqrt{3}i}{2}\right)^{3n}$$
 is
(A) 2 (B) 1 (C) 0 (D) 3

93. The number of ways in which we can select three numbers from 1 to 30 so as to exclude every selection of three consecutive number is (A) 4032 (B) 2163 (C) 2040 (D) 4010

94. The value of
$$\log_{e} (1 + x + x^{2} + x^{3} + \dots)$$
 is equal to
(A) $\frac{x}{1!} - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + \dots$
(B) $x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$
(C) $\frac{x}{1} + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \frac{x^{4}}{4!} + \dots$
(D) $\frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$
95. If $y = \frac{x}{1} + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots$, then $\frac{dy}{dx}$ is
(A) 0
(B) $\log_{e} (1 - x)$
(C) $\frac{1}{1 - x}$
(D) e^{x}
96. $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$ is

97. The rate of change of volume of the sphere with respect to its surface area when the radius is 2 cm is (D) 2 (D) 1

(C) $\frac{\pi}{6}$

(C) $\frac{4}{3}a^2$

98. The area between $y^2 = 4ax$ and its latus rectum is

(B) $\frac{\pi}{2}$

(B) $\frac{8}{3}a^2$

(A)
$$\frac{8}{3}a$$

(A) π

(D) $\frac{\pi}{4}$

(D) $4a^2$

99. What is the wrong in front view of the given figure?

