Kantipur Engineering College Dhapakhel, Lalitpur

Solution of Tutorial I, Engineering Chemistry, Electrochemical Cells

1. Write cell notation, electrode reaction and E_{cell} for a cell at 25°C having following electrodes: $E^{o}_{Zn++/Zn} = -0.76 \text{ V}$, $[Zn^{++}] = 1.2\text{M}$, $E^{o}_{Cu/Cu++} = -0.34 \text{ V}$, $[Cu^{++}] = 0.01\text{M}$.

Solution: $E^{o}_{Cu^{++}/Cu} = 0.34 \text{ V}$ $Zn / Zn^{++} (1.2 \text{ M}) // Cu^{++} (0.01 \text{ M}) / Cu$ Cell Notation \longrightarrow Zn⁺⁺ + 2e (oxidation) **Cell Reaction** Anode: Zn Cathode: $Cu^{++} + 2e \longrightarrow Cu$ (reduction) _____ Net Reaction: $Zn + Cu^{++} \longrightarrow Zn^{++} + Cu$ (redox reaction) Now, $Ecell = E^{\circ}cell - 2.303 \frac{RT}{nF} \log Q$ Since, $E^{\circ}cell = E^{\circ}cathode - E^{\circ}anode = 0.34 - (-0.76) = 1.1 Volt$ And, $Q = \frac{[Zn^{++}][Cu]}{[Cu^{++}][Zn]} = \frac{[Zn^{++}]}{[Cu^{++}]} = \frac{1.2}{0.01}$ Therefore, $Ecell = 1.1 - 2.303 \frac{8.314 \times 298}{2 \times 96500} \log \frac{1.2}{0.01} = 1.038$ V Answer

2. From the given electrode couple $E^{\circ}_{Fe/Fe++} = 0.44$ volt, $[Fe^{++}] = 0.5M$ and $E^{\circ}_{Ag/Ag+} = -0.80$ volt, $[Ag^{+}] = 0.2M$. Write the (i) electrode reaction (ii) net cell reaction (iii) cell notation (iv) E_{cell} and (v) spontaneity of the cell.

Solution: Cell Notation Fe / Fe⁺⁺ (0.5 M) // Ag⁺ (0.2M) / Ag
Cell Reaction Anode: Fe
$$\longrightarrow$$
 Fe⁺⁺ + 2e (oxidation)
Cathode: 2Ag⁺ + 2e \longrightarrow 2Ag (reduction)
.....
Net Reaction: Fe + 2Ag⁺ \longrightarrow Fe⁺⁺ + 2Ag (redox reaction)
Now, Ecell = E°cell - 2.303 $\frac{RT}{nF} \log Q$
Since, E°cell = E°cathode - E°anode = 0.80- (-0.44) = 1.24 Volt
And, $Q = \frac{[Fe^{++}][Ag]^2}{[Ag^+]^2[Fe]} = \frac{[Fe^{++}]}{[Ag^+]^2} = \frac{0.5}{0.2^2}$
Therefore, Ecell = 1.24 - 2.303 $\frac{8.314 \times 298}{2 \times 96500} \log \frac{0.5}{0.2^2} = 1.207V$ Answer

3. Find the Emf of the cell at 25°C in which silver electrodes are dipped in 0.1 M and 0.5 M silver nitrate solution respectively. E°_{Ag/Ag+}= -0.80volt

Solution: $E^{\circ}_{Ag^+/Ag} = 0.80$ volt (standard reduction potential) Reduction rxn: $Ag^+ + e \longrightarrow Ag$ $\therefore Q = \frac{[Ag]}{[Ag^+]} = \frac{1}{[Ag^+]}$ For first electrode (silver dipped in 0.1M silver nitrate) at 25°C; $E_1 \text{red} = E^{\circ} \text{red} - \frac{0.0591}{n} \log \frac{1}{[Ag^+]} = 0.80 - \frac{0.0591}{1} \log \frac{1}{0.1} = 0.7409 \text{ V}$ For second electrode (silver dipped in 0.5M silver nitrate) at 25°C; E_2 red = E^ored $-\frac{0.0591}{n}\log\frac{1}{[Ag^+]} = 0.80 - \frac{0.0591}{1}\log\frac{1}{0.5} = 0.7822$ V

Since the reduction potential of second electrode is greater it functions as cathode.

:. Ecell = E_2 red - E_1 red = 0.7822 - 0.7409 = **0.413 V** Answer

4. The Emf of a cell consisting of standard AgCl/Ag, Cl⁻ electrode and copper electrode dipped in CuSO₄ is found to be 0.06V. What is the molar concentration of Cu^{++} ions in the cell?

AgCl + e \rightarrow Ag + Cl $E^{\circ} = + 0.22V$ Cu^{++} + 2e \rightarrow Cu $E^{\circ} = + 0.34V$

Solution: Looking at the reduction potential value, the system of Cu function as cathode and AgCl/Ag, Cl⁻ function as anode.

 $\therefore \text{ Ecell} = \text{Ecathode} - \text{Eanode}$ Or, Ecathode = Ecell - Eanode = 0.06 - 0.22 = -0.16 V [anode is in standard state] Now, Ecathode = E^ocathode - $\frac{0.0591}{n} \log \frac{1}{[Cu^{++}]}$ Or, -0.16 = 0.34 - $\frac{0.0591}{2} \log \frac{1}{[Cu^{++}]}$ $\therefore [Cu^{++}] = 0.01 \text{ M Answer}$

5. The Emf of a following cell of the following cell at 25°C is 1.12 volt. Find the concentration of CuSO₄? Zn/Zn⁺⁺ (0.1M) // Cu⁺⁺ (xM)/ Cu. Standard electrode potential provided in the previous questions.

Solution: Cell reaction from question 1 (same)

 $Zn + Cu^{++} \longrightarrow Zn^{++} + Cu$ $\therefore Q \frac{[Zn^{++}]}{[cu^{++}]} = \frac{0.1}{[cu^{++}]}$ Since, $E^{\circ}cell = E^{\circ}cathode - E^{\circ}anode = 0.34 - (-0.76) = 1.1 Volt$ And, $Q = \frac{[Zn^{++}][Cu]}{[cu^{++}][Zn]} = \frac{[Zn^{++}]}{[cu^{++}]} = \frac{0.1}{x}$ Therefore, $Ecell = 1.1 - 2.303 \frac{8.314 \times 298}{2 \times 96500} \log \frac{0.1}{x}$ Or, $1.12 = 1.1 - 2.303 \frac{8.314 \times 298}{2 \times 96500} \log \frac{0.1}{x}$ Therefore, $x = [Cu^{++}] = 0.5$ M Answer

6. Formulate a cell with the following cell reaction: (standard electrode potential provided in question 1 and 2) $2Ag^+ + Cu \rightarrow 2Ag + Cu^{++}$

Solution: Here copper is oxidized and silver is reduced. Hence, copper functions as anode and silver as cathode. The cell notation for the cell is:

 $Cu/Cu^{++}(M) // Ag^{+}(M) / Ag$ Answer

7. Predict which one of the following reactions is feasible. Given $E_{Zn++/Zn}^{o} = -0.76$ volt and $E_{Cd++/Cd}^{o} = -0.40$ volt.

a) Zn⁺⁺ + Cd → Zn + Cd⁺⁺
 Solution: This reaction is not possible because zinc has tendency to oxidize and cadmium has tendency to get reduced. Zinc already is oxidized form and cadmium in reduced form.
 b) Zn + Cd⁺⁺ → Zn⁺⁺ + Cd

b) $Zn + Cd^{++} \rightarrow Zn^{++} + Cd$ Solution: This reaction takes place because cadmium has higher reduction potential then zinc, hence Cd^{++} gets reduced to Cd by oxidizing Zn to Zn^{++} . **Electrochemical Cells Tutorial contd..**

8. By how much will the potential of half cell Cu⁺⁺/Cu change if the solution is diluted 10 times at 25°C?

Solution: Here, $E^{o}Cu^{++}/Cu = 0.34 V$

Let the concentration of CuSO₄ before dilution is 1 M and after dilution is 0.1 M.

Electrode reaction: $Cu^{++} + 2e^{-} \longrightarrow Cu$ Therefore, $Q=1/[Cu^{++}]$ and n=2

Before dilution: $\text{Ered}_1 = \text{E}^{\circ}\text{red} - \frac{0.0591}{2} \quad \log \frac{1}{1} = 0.34 - 0 = 0.34 \text{ V}$

After dilution (ten times): $\text{Ered}_2 = \text{E}^{\circ}\text{red} - \frac{0.0591}{2} \log \frac{1}{0.1} = 0.34 - 0.030 = 0.310 \text{ V}$

There change in potential: Ered_1 - $\text{Ered}_2 = 0.34 - 0.310 = 0.30 \text{ V}$ Answer

9. Calculate the electrode potential for Fe^{3+}/Fe^{2+} electrode at 25°C when the concentration of Fe^{2+} is exactly five times that of Fe^{3+} . Given $E^{\circ}Fe^{+++}/Fe^{++} = +0.77$ V.

Solution: Electrode reaction: $Fe^{3+} + e^- \longrightarrow Fe^{2+}$; Therefore, $Q = [Fe^{2+}]/Fe^{3+}$] and n = 1Given: Let, $[Fe^{2+}] = 5 \times and [Fe^{3+}] = x$; Therefore $Q = [Fe^{2+}]/Fe^{3+} = 5x/x = 5$

Now: Ered = E° red - $\frac{0.0591}{1}$ log 5 = 0.77- 0.041 = 0.729 V Answer