KANTIPUR ENGINEERING COLLEGE

Dhapakhel, Lalitpur
Model Entrance Test (2073)

Solution Set: III (B)

Section: I

1. (B)
2. (C)
3. (A)
4. (D)
5. (D)
6. (D)
7. (A)
8. (A)
9. (A)
10. (C)
11.(C)
11. (C)
12. (B)
13. (B)
14. (B) $n\{(A \times B) n(B \times A)\}=\left\{n(A n B\}^{2}=2^{2}=4\right.$
15. (B) for both roots to be zero, constant tem $=0$, coefficient of $x=0$

$$
\begin{array}{ll}
\Rightarrow \mathrm{n}=0, & \mathrm{~m}-7=0 \\
\Rightarrow \mathrm{~m}=7, & \mathrm{n}=0
\end{array}
$$

17. (A) $7 \operatorname{Cos}^{2} x+3 \operatorname{Cos}^{2} x=4$

$$
7 \operatorname{Sin}^{2}+3-3 \operatorname{Sin}^{2} x=4
$$

$$
4 \operatorname{Sin}^{2} x=1 \quad \operatorname{Sin}^{2} x=\frac{1}{4}=\operatorname{Sin}^{2} \frac{\pi}{6} \Rightarrow x=n \pi \pm \frac{\pi}{6}
$$

18. (C) Here $A=I$, So $A^{2}+2=I^{2}+2 A=I+2 A=A+2 A=3 A$
19.

$$
\text { So } \frac{n(n+1)}{2}=66 \Rightarrow n=11
$$

20. (D) $\tan ^{-1} \frac{3 x-x^{3}}{1-3 x^{2}}=3 \tan ^{-1} x$ so $\frac{d 3 \tan ^{-1} x}{d x}=\frac{3}{1+x^{2}}$
21.

(A) $\int \tan ^{-1}\left(\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right) d x=\int \cos ^{-1} \cos 2 x d x=\int 2 x d x=x^{2}+c$
22. (C) Here, $\vec{a} \times \vec{b}=-(\vec{b} x \vec{a})$ so angle between $\vec{a} \times \vec{b}$ anb $\vec{b} x \vec{a}=180^{\circ}$
23. (B) As, $(\mathrm{h}, 0),(\mathrm{o}, \mathrm{k})$ and $(3,3)$ are collinear so

$$
\begin{aligned}
& \frac{\mathrm{k}-\mathrm{o}}{\mathrm{o}-\mathrm{h}}=\frac{3-\mathrm{k}}{3-\mathrm{o}} \\
& \Rightarrow 3 \mathrm{k}=-3 \mathrm{~h}-\mathrm{hk} \quad \Rightarrow 3 \mathrm{~h}+3 \mathrm{k}=\mathrm{hk} \Rightarrow \frac{1}{\mathrm{n}}+\frac{1}{\mathrm{k}}=\frac{1}{3}
\end{aligned}
$$

24. (B) length of the line $=\sqrt{2^{2}+3^{2}+6^{2}}=\sqrt{49}=7$
25. (D)
26. (C)
27. (A)
28. (D)
29. (B)
30.

(A)
31. (C)
32. (C)
33. (B)
34. (D)
35.
(A)
36. (B)
37. (D)
38. (C)
39. (A) The narrower the diameter of the tube , the greater will be the rise of the liquid in the tube.
40. (B) In elastic collision, K.E. is conserved
41. (D) In radiation, the heat is transferred at the speed of the light.
42. (A) $\operatorname{Sin} \mathrm{c}=1 / \mu ; \mu$ for violet color is largest and hence the critical angle for violet color is minimum.
43. (C) The transverse nature of the light is shown by polarization of light
44. (A) There will be mutual repulsion. Hence the radius will increase
45. (A) We know that heater draws a high current from the mains. So, there is appreciable potential drop in line. As the potential difference in the bulbs falls and hence they become dim
46. (C) At poles, the horizontal component of the earth's magnetic field is zero and hence the compass needle will be vertical
47. (B) Inner walls of the big halls should be a good sound absorber to avoid echo and overlapping of sound
48. (C) We know that $\lambda=\frac{h}{m v}=\frac{h}{p}$ so they will have the same momentum
49. (B)
50. (D)
51. (D)
52. (B) Solution:

1 mol of $\mathrm{He}=4 \mathrm{~g}=6.023 \times 10^{23}$ atoms
Wt. of 6.023×10^{23} atoms $\mathrm{He}=4 \mathrm{~g}$
Wt. of 1 atom $=\frac{4}{6.023 \times 10^{23}}=6.64 \times 10^{-24} \mathrm{~g}$
53. (C)
54. (A)
55. (A)
56. (B)
57. (C)
58. (D)
59. (B)
60. (D)

Section: II

61.

(A)
62. (C)
63. (C) function is defined if $4 x-x^{2} \geq 0 \Rightarrow x(4-x) \geq 0$

$$
\Rightarrow 0 \leq x-\leq 4 \Rightarrow[0,4]
$$

Also $4-y^{2} \mathrm{y}$ is a positive square root. So $\mathrm{y} \geq 0 \ldots$......range $=[0,2]$

$$
(x-2)^{2} \quad \text { So } 4-y^{2} \geq 0
$$

64. (A) $\sin 2 \mathrm{~A}+\sin \mathrm{z} \mathrm{B}=\sin 2 \mathrm{C}$

Or, $2 \sin (A+B) \operatorname{Cos}(A-B)=2 \operatorname{Sin} c \operatorname{Cos} C$
$\Rightarrow \operatorname{SinC} \cos (A-B)=\operatorname{Sin} C \operatorname{Cos} C$
$\Rightarrow \operatorname{Cos}(\mathrm{A}-\mathrm{B})=\operatorname{Cos} \mathrm{C}[\ldots . \mathrm{C} \pm 0]$
$\Rightarrow \mathrm{A}-\mathrm{B}=\mathrm{C}$
$\Rightarrow \mathrm{A}=\mathrm{B}+\mathrm{C}$
65.
(B) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}=153 \Rightarrow \mathrm{n}=18$
66. (D) $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\mathrm{AP} \Rightarrow \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}$
$\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in $\mathrm{GP} \Rightarrow \mathrm{c}^{2}=\mathrm{bd}$
$\mathrm{c}, \mathrm{d}, \mathrm{e}$ are in $\mathrm{HP} \Rightarrow \mathrm{d}=\frac{2 \mathrm{ce}}{\mathrm{c}+\mathrm{e}}$
so $\mathrm{c}^{2}=\frac{\mathrm{a}+\mathrm{c}}{2}, \frac{2 \mathrm{ce}}{\mathrm{c}+\mathrm{e}}$
$\Rightarrow c^{2}=a e$
$\Rightarrow \mathrm{a}, \mathrm{c}$, e are in ap
67.

$$
\begin{aligned}
& \text { (A) } \frac{a=i b}{c+i d} \times \frac{c-i d}{c-i d}=\frac{a c+b d}{c^{2}+d^{2}}+i \frac{\left(b c _a d\right)}{c^{2}+d^{2}} \text { which is purely real if } b c-a d=0 \\
& \Rightarrow a d=b c
\end{aligned}
$$

68.

$$
\text { (A) } \operatorname{tn}=\frac{1+2+2^{2}+\ldots \ldots \ldots+2^{n-1}}{n!}=\frac{2^{n}-1}{n!}=\frac{2 n}{n!}-\frac{1}{n!}
$$

$$
\sum_{n=1}^{\infty} \operatorname{tn}=\sum_{n=1}^{\infty} \frac{2 n}{n!}-\sum_{n=1}^{\infty} \frac{\Delta}{n!}=e^{2}-e
$$

69. (C) Given $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
& \vec{a}+\vec{b}=-\vec{c} \\
& (\vec{a}+\vec{b})^{2}=(-\vec{c})^{2} \\
\Rightarrow & 2 \cdot 3 \cdot 5 \cos \theta=15 \\
\Rightarrow & \cos \theta=\frac{1}{2} \Rightarrow \theta 60^{\circ}
\end{aligned}
$$

70. (C) The equation of bisectors of angle between the lines $a x^{2}-2 h x y+b y^{2}=0$, is $-h\left(x^{2}-y^{2}\right)=(a-b)$ xy ie. $h\left(x^{2}-y^{2}\right)+(a-b) x y=0$
If $y=m x$ is one of the bisectors ten

$$
\begin{aligned}
& \mathrm{h}\left(\mathrm{x}^{2}-\mathrm{m}^{2} \mathrm{x}^{2}\right)+(\mathrm{a}-\mathrm{b}) \mathrm{x} \cdot \mathrm{mx}=0 \\
& \Rightarrow \mathrm{~h}\left(1-\mathrm{m}^{2}\right)+(\mathrm{a}-\mathrm{b}) \mathrm{m}=0
\end{aligned}
$$

71. (D) The circles cut orthogonally if $2 g_{1} g_{2}+2 f_{1} f_{2}=C_{1}+C_{2}$

$$
\begin{aligned}
& \Rightarrow 2 \cdot \lambda \cdot 2+2 \cdot 3 \cdot 1=1+0 \\
& \Rightarrow 4 \lambda+6=1 \\
& \Rightarrow \lambda=-5 / 4
\end{aligned}
$$

72.

(D) Parabola is $\mathrm{y}^{2}=\mathrm{kx}-8 \Rightarrow \mathrm{y}^{2}=\frac{4 . k}{4}\left(x-\frac{8}{k}\right)$

Equation of directix $\rightarrow \mathrm{x}-1=0$

$$
\begin{aligned}
& \text { So, } 1=\frac{8}{\mathrm{k}}-\frac{\mathrm{k}}{4} \\
& \Rightarrow 4 \mathrm{k}=32-\mathrm{k}^{2} \\
& \Rightarrow \mathrm{k}^{2}-4 \mathrm{k}-32=0 \quad \Rightarrow \mathrm{k}=8,-4
\end{aligned}
$$

73. (B) coordinates of $\mathrm{A}=(3 \mathrm{a}, 0,0)$

$$
\begin{array}{lll}
" & \mathrm{~B}=(0,3 \mathrm{~b}, 0) & \therefore \text { centroid }(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \\
" & \mathrm{C}=(0,0,3 \mathrm{c})
\end{array}
$$

74. (B) $y=\sqrt{\sin x+y} \Rightarrow y^{2} \sin x+y$

$$
\Rightarrow 2 y \frac{d y}{d x} \cos x+\frac{d y}{d x} \Rightarrow(2 y-1) \frac{d y}{d x}-\cos x=0
$$

75.

(D) $\mathrm{f}^{1}(\mathrm{x})=\sec ^{2} \mathrm{x}-1=\tan ^{2} \mathrm{x}>0$
(D) $\mathrm{f}^{1}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\frac{1}{1+\mathrm{x}^{2}} \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\tan ^{-1} \mathrm{x}+\mathrm{c}$
$\Rightarrow \mathrm{f}^{1}(0)=1+0+\mathrm{c}$
$\Rightarrow 1=1+0+C \Rightarrow C=0$
So, $\mathrm{fe}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\tan ^{-1} \mathrm{x}$
77. (B) Along x -axis $\mathrm{y} u \Rightarrow x \quad 0,4$

$$
\begin{aligned}
\therefore \text { Required area } & =\int_{0}^{4}\left(4 \mathrm{x}-\mathrm{x}^{2}\right) \mathrm{dx} \\
& =\left[2 x^{2}-\frac{x 3}{3}\right]_{0}^{4}=32-\frac{64}{3}=\frac{32}{3}
\end{aligned}
$$

78.

(C)
79.
(A)
80.
(A).
81.
(B)
82.
(C) Here $\Delta v=(8 j-6 i) \mathrm{m} / \mathrm{s}$
$\therefore|\Delta \mathrm{v}|=\sqrt{(8)^{2}+(6)^{2}}=10 \mathrm{~m} / \mathrm{s}$
Now, $\mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{10}{10}=1 \mathrm{~m} / \mathrm{s}^{2}$
83.
(D) Here $\mathrm{h}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2} \quad[\because \mathrm{u}=0]$

$$
\begin{aligned}
& \therefore \frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\left(\frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}\right)^{2} \Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\sqrt{\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}} \\
& \Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}
\end{aligned}
$$

84. (B) When the lift is moving upwars, then
$\mathrm{W}=\mathrm{m}(\mathrm{g}+\mathrm{a})$
Here $\mathrm{a}=4.9 \mathrm{~m} / \mathrm{s}^{2} \therefore \mathrm{~W}=\mathrm{m}\left(\mathrm{g}+\frac{\mathrm{g}}{2}\right)=\frac{3}{2} \mathrm{mg}=\frac{3}{2} \times 60=90 \mathrm{~N}$
85. (D) The stress required to double the length is called Young's Modulus.

$$
Y=\frac{F}{A} \Rightarrow F=Y \times A \therefore F=2 \times 10^{11} \times 10^{-4}=2 \times 10^{7} \mathrm{~N}
$$

86. (A) If H be the height to which a liquid rises in the inclined tube, then

$$
H=\frac{h}{\sin \theta} \quad \therefore H=\frac{h}{\sin 45^{\circ}}=\frac{h}{1 / \sqrt{2}}=\sqrt{2} h
$$

87. (C) $\frac{\mathrm{C}}{100}=\frac{\mathrm{F}-(\mathrm{LFP})}{(\mathrm{UFP})-(\mathrm{LFP})}$

Where $\mathrm{C}=$ actual temperature
$\mathrm{F}=$ reading on faulty thermometer
LFP = lower fixed point
UFP $=$ upper fixed point $\quad \therefore \frac{\mathrm{C}}{100}=\frac{41-5}{95-5}=\frac{36}{90} \Rightarrow \mathrm{C}=40^{\circ} \mathrm{C}$
88. (C) $d Q=d U+d W$

$$
35=\mathrm{dU}+(-15)
$$

$$
\therefore \mathrm{dU}=50 \mathrm{~J}
$$

89. (A) We know that, $\mathrm{f}=\frac{1}{21} \sqrt{\frac{\mathrm{~T}}{\mathrm{~m}}} \quad \alpha \sqrt{\mathrm{~T}}$
$\therefore \frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}} \Rightarrow \mathrm{~T}_{2}=\left(\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}\right)^{2} \mathrm{~T}_{1}$
Given that $\mathrm{f}_{2}=2 \mathrm{f}_{1}$ and $\mathrm{T}_{1}=10 \mathrm{~N} . \quad \therefore \mathrm{T}_{2}=\left(\frac{2 \mathrm{f}_{1}}{\mathrm{f}_{1}}\right)^{2} \times 10=40 \mathrm{~N}$
90.

(B) $M=\frac{\mathrm{I}}{\mathrm{O}}=\frac{\mathrm{v}-\mathrm{f}}{\mathrm{f}}=\frac{75-25}{25}=2$
$\therefore \mathrm{I}=2 \times 0=2 \times 1.5=3.0 \mathrm{~cm}$
91. (D) $I_{\max }=\left(a_{1}+a_{2}\right)^{2} \Rightarrow$ when $a_{1}=a_{2}$
$\mathrm{I}_{\text {max }}=4 \mathrm{a}^{2}=\mathrm{I}_{0}$
When one slit is closed then, $I=a^{2}=\frac{I_{0}}{4}$
92. (A) From $T=2 \pi \sqrt{\frac{I}{M B}}, 4=2 \pi \sqrt{\frac{I}{M B}}$

When it is cut into two equal parts in length, mass of each part becomes $1 / 2$;
$I=\operatorname{mass} \frac{(\text { length })^{2}}{12}$ becomes $\frac{1^{\text {th }}}{8}$ and M becomes $1 / 2$
$\mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{I} / 8}{\mathrm{M} / 2 \cdot \mathrm{~B}}}=\frac{1}{2}\left(2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}\right)=\frac{1}{2} \times 4=2 \mathrm{sec}$
93.

$$
\text { (A) } \begin{aligned}
& V=\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}}=\frac{\left(20 \times 10^{-6} \times 500\right)+(}{}\left(10 \times 10^{-6} \times 200\right) \\
&\left(20 \times 10^{-6}\right)+\left(10 \times 10^{-6}\right) \\
& 400 \mathrm{~V}
\end{aligned}
$$

94. (C) $R_{s}=R+2 R=3 R$
and $R_{p}=\frac{(R \times 2 R)}{3 R}=\frac{2}{3} R$
Heat produced in series $=i^{2} 3 R$
Heat produced in parallel $=\mathrm{i}^{2} \frac{3}{2} \mathrm{R}$
\therefore Ratio of heat produced $=\frac{\mathrm{i}^{2} 3 \mathrm{R}}{\mathrm{i}^{2}\left(\frac{2}{3}\right) \mathrm{R}}=\frac{9}{2}=9: 2$
95. (C) As v $=\frac{h c}{\lambda \mathrm{e}}-\emptyset_{0}$

$$
=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{2000 \times 10^{-10} \times 1}-5.01
$$

$$
=(6.21-5.01) \mathrm{ev}=1.2 \mathrm{ev}
$$

96. (D) The ratio of left mass to original mass

$$
\begin{aligned}
& =\frac{1}{16}=\left(\frac{1}{2}\right)^{4} \\
& \left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{t / T} \Rightarrow t=4 T
\end{aligned}
$$

\therefore half life of the substance is
$\therefore \mathrm{T}=\frac{\mathrm{t}}{4}$
Here $\mathrm{t}=120$ days $\quad \therefore \mathrm{T}=\frac{120}{4}=30$ days
97. (D)
98. (B) Solution: $\mathrm{Q}=\mathrm{I} \times \mathrm{t}$

$$
=0.873 \times 3 \times 60=157.16 \text { Coulomb }
$$

$$
\text { Here } \mathrm{Cu}^{++}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}
$$

1 mol 2 mol
2 F can deposit 63.5 g of Cu 2×96500 Coulomb deposit 63.5 g

$$
157.16 \text { oulomb deposit }=\frac{63.5 \times 157.14}{193000}=0.0517 \mathrm{~g}
$$

99. (B) Solution: By normality equation the new concentration of the solution can be calculated

