KANTIPUR ENGINEERING COLLEGE
 Dhapakhel, Lalitpur
 Model Entrance Test (2073)

Solution Set: III (A)

Section: I

1. (D)
2. (B)
3. (C)
4. (A)
5. (A)
6. (B)
7. (C)
8. (D)
9. (B)
10. (B)
11. (D)
12. (D)
13. (A)
14. (C)
15. (C)
16. (A)
17. (A)
Solution: $\quad 1 \mathrm{~mol}$ of $\mathrm{He}=4 \mathrm{~g}=6.023 \times 10^{23}$ atoms
Wt. of 6.023×10^{23} atoms $\mathrm{He}=4 \mathrm{~g}$

$$
=\frac{4}{6.023 \times 10^{23}}
$$

Wt. of 1 atom of $\mathrm{He}=6.64 \times 10^{-24} \mathrm{~g}$
19. (C)
24. (B)
27. (C) The (D) 26. (B)
27. (C) The narrower the diameter of the tube, the greater will be the rise of the liquid in the tube.
28. (A) In elastic collision, K.E. is conserved.
29. (D) In radiation, the heat is transferred at the speed of the light
30. (D) $\operatorname{Sin} \mathrm{c}=1 / \mu ; \mu$ for violet color is largest and hence the critical angle for violet color is minimum
31. (D) The transverse nature of the light is shown by polarization of light.
32. (A) There will be mutual repulsion. Hence the radius will increase.
33. (A) We know that heater draws a high current from the mains. So, there is appreciable potential drop in line. As the potential difference in the bulbs falls and hence they become dim.
34. (A) At poles, the horizontal component of the earth's magnetic field is zero and hence the compass needle will be vertical.
35. (C) Inner walls of the big halls should be a good sound absorber to avoid echo and overlapping of sound.
36. (C) We know that $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\mathrm{P}}$ so they will have the same momentum.
37.
(C) $\mathrm{n}\{(\mathrm{A} \times \mathrm{B}) \mathrm{n}(\mathrm{B} \times \mathrm{A})\}=\left\{\mathrm{n}(\mathrm{AnB}\}^{2}=2^{2}=4\right.$
38. (B) for both roots to be zero, constant tem $=0$, coefficient of $x=0$

$$
\begin{array}{ll}
\Rightarrow \mathrm{n}=0, & \mathrm{~m}-7=0 \\
\Rightarrow \mathrm{~m}=7, & \mathrm{n}=0
\end{array}
$$

39.

(B) $7 \operatorname{Cos}^{2} \mathrm{x}+3 \operatorname{Cos}^{2} \mathrm{x}=4$

$$
7 \operatorname{Sin}^{2}+3-3 \operatorname{Sin}^{2} x=4
$$

$$
4 \operatorname{Sin}^{2} x=1 \quad \Rightarrow \operatorname{Sin}^{2} x=\frac{1}{4}=\operatorname{Sin}^{2} \frac{\pi}{6} \Rightarrow x=n \pi \pm \frac{\pi}{6}
$$

40. (B) Here $A=I$, So $A^{2}+2 a$

$$
=\mathrm{I}^{2}+2 \mathrm{~A}=\mathrm{I}+2 \mathrm{~A}=\mathrm{A}+2 \mathrm{~A}=3 \mathrm{~A}
$$

41. (B) $\lim _{\mathrm{x} \rightarrow 1} \frac{\mathrm{x}+2 \mathrm{x}+3 \mathrm{x}^{2}+\ldots \ldots .+\mathrm{nx}}{\mathrm{n}-1} 1+2+3+\ldots .+\mathrm{n}$

$$
=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
$$

$$
\text { So } \frac{n(n+1)}{2}=66 \Rightarrow n=11
$$

42.

(A) $\tan ^{-1} \frac{3 x-x^{3}}{1-3 x^{2}}=3 \tan ^{-1} x$ so $\frac{d 3 \tan ^{-1} x}{d x}=\frac{3}{1+x^{2}}$
43.
(C) $\int \tan ^{-1}\left(\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right) d x=\int \cos ^{-1} \cos 2 x d x=\int 2 x d x=x^{2}+c$
44. (D) Here, $\vec{a} x \vec{b}=-(\vec{b} x \vec{a})$ so angle between $\vec{a} x \vec{b}$ anb $\vec{b} x \vec{a}=180^{\circ}$
45. (D) As, (h, 0), (o, k) and $(3,3)$ are collinear so

$$
\begin{aligned}
& \frac{\mathrm{k}-\mathrm{o}}{\mathrm{o}-\mathrm{h}}=\frac{3-\mathrm{k}}{3-\mathrm{o}} \\
& \Rightarrow 3 \mathrm{k}=-3 \mathrm{~h}-\mathrm{hk} \\
& \Rightarrow 3 \mathrm{~h}+3 \mathrm{k}=\mathrm{hk} \Rightarrow \frac{1}{\mathrm{n}}+\frac{1}{\mathrm{k}}=\frac{1}{3}
\end{aligned}
$$

46. (A) length of the line $=\sqrt{2^{2}+3^{2}+6^{2}}=\sqrt{49}=7$
47.

(C)
(A)
57. (C)
48. (B)
53. (D)
58. (B)
49. (B)
54. (B)
59. (D)

Section: II

61. (B)
62. (D)
63. (C)
64. (A)
65. (D)
66. (C)
67. (C)
68. (A)
69. (A)
70. (D) Solution: $\mathbf{Q}=\mathbf{I} \times \mathbf{t}$
$=0.873 \times 3 \times 60=157.16$ Coulomb
Here $\mathrm{Cu}^{++}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$
1 mol 2 mol
2 F can deposit 63.5 g of Cu
2×96500 Coulomb deposit 63.5 g

$$
\text { 157.16 Coulomb deposit }=\frac{63.5 \times 157.14}{193000}=0.0517 \mathrm{~g}
$$

67. (A) Solution: By normality equation the new concentration of the solution can be calculated

$$
\mathrm{V}_{1}=250 \mathrm{ml} \quad \mathrm{~S}_{1}=0.25 \mathrm{M} \quad \mathrm{~V}_{2}=500 \mathrm{ml} \quad \mathrm{~S}_{2}=?
$$

Or $_{2} \mathrm{~S}_{2}=\frac{\mathrm{V}_{1} \times \mathrm{S}_{1}}{\mathrm{~V}_{2}} \quad=0.125 \quad \mathrm{~S}_{2}=\frac{250 \times 0.25}{500}$
68. (C)
69. (A) Here $\Delta v=(8 j-6 i) m / s$
$\therefore|\Delta \mathrm{v}|=\sqrt{(8)^{2}+(6)^{2}}=10 \mathrm{~m} / \mathrm{s}$
Now, $\mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{10}{10}=1 \mathrm{~m} / \mathrm{s}^{2}$
70. (A) Here $\mathrm{h}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2} \quad[\because \mathrm{u}=0]$
$\therefore \frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\left(\frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}\right)^{2} \Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\sqrt{\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}} \bigcirc \Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
71. (C) When the lift is moving upwards, then
$\mathrm{W}=\mathrm{m}(\mathrm{g}+\mathrm{a})$
Here $\mathrm{a}=4.9 \mathrm{~m} / \mathrm{s}^{2} \therefore \mathrm{~W}=\mathrm{m}\left(\mathrm{g}+\frac{\mathrm{g}}{2}\right)=\frac{3}{2} \mathrm{mg}=\frac{3}{2} \times 60=90 \mathrm{~N}$
72. (B) The stress required to double the length is called Young's Modulus.

$$
Y=\frac{F}{A} \Rightarrow F=Y \times A \quad \therefore F=2 \times 10^{11} \times 10^{-4}=2 \times 10^{7} \mathrm{~N}
$$

73. (C) If H be the height to which a liquid rises in the inclined tube, then $\mathrm{H}=\frac{\mathrm{h}}{\sin \theta} \quad \therefore \mathrm{H}=\frac{\mathrm{h}}{\sin 45^{\circ}}=\frac{\mathrm{h}}{1 / \sqrt{2}}=\sqrt{2} \mathrm{~h}$
74.

(B) $\frac{C}{100}=\frac{F-(L F P)}{(U F P)-(L F P)}$

Where $\mathrm{C}=$ actual temperature
$\mathrm{F}=$ reading on faulty thermometer
LFP $=$ lower fixed point
UFP $=$ upper fixed point

$$
\therefore \frac{\mathrm{C}}{100}=\frac{41-5}{95-5}=\frac{36}{90} \Rightarrow \mathrm{C}=40^{\circ} \mathrm{C}
$$

75. (D) $\mathrm{dQ}=\mathrm{dU}+\mathrm{dW}$
$35=\mathrm{dU}+(-15)$
$\therefore \mathrm{dU}=50 \mathrm{~J}$
76. (D) We know that, $\mathrm{f}=\frac{1}{21} \sqrt{\frac{\mathrm{~T}}{\mathrm{~m}}} \quad \alpha \quad \sqrt{\mathrm{~T}}$
$\therefore \frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}} \Rightarrow \mathrm{~T}_{2}=\left(\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}\right)^{2} \mathrm{~T}_{1}$
Given that $\mathrm{f}_{2}=2 \mathrm{f}_{1}$ and $\mathrm{T}_{1}=10 \mathrm{~N} . \quad \therefore \mathrm{T}_{2}=\left(\frac{2 \mathrm{f}_{1}}{\mathrm{f}_{1}}\right)^{2} \times 10=40 \mathrm{~N}$
77. (D) $\mathrm{M}=\frac{\mathrm{I}}{\mathrm{o}}=\frac{\mathrm{v}-\mathrm{f}}{\mathrm{f}}=\frac{75-25}{25}=2 \therefore \mathrm{I}=2 \times 0=2 \times 1.5=3.0 \mathrm{~cm}$
78. (A) $I_{\text {max }}=\left(a_{1}+a_{2}\right)^{2} \Rightarrow$ when $a_{1}=a_{2}$
$I_{\text {max }}=4 a^{2}=I_{0}$
When one slit is closed then, $I=a^{2}=\frac{I_{0}}{4}$
79. (C) From $T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}} \quad, 4=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}$

When it is cut into two equal parts in length, mass of each part becomes $1 / 2$;
$I=\operatorname{mass} \frac{(\text { length })^{2}}{12}$ becomes $\frac{1^{\text {th }}}{8}$ and M becomes $1 / 2 \therefore \mathrm{~T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{I} / 8}{\mathrm{M} / 2 \cdot \mathrm{~B}}}=$ $\frac{1}{2}\left(2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}\right)=\frac{1}{2} \times 4=2 \mathrm{sec}$
80. (B) $\mathrm{V}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{\left(20 \times 10^{-6} \times 500\right)+\left(10 \times 10^{-6} \times 200\right)}{\left(20 \times 10^{-6}\right)+\left(10 \times 10^{-6}\right)}=400 \mathrm{~V}$
81. (B) $R_{s}=R+2 R=3 R$
and $R_{p}=\frac{(R \times 2 R)}{3 R}=\frac{2}{3} R$
Heat produced in series $=i^{2} 3 R$
Heat produced in parallel $=\mathrm{i}^{2} \frac{3}{2} \mathrm{R}$
\therefore Ratio of heat produced $=\frac{\mathrm{i}^{2} 3 \mathrm{R}}{\mathrm{i}^{2}\left(\frac{2}{3}\right) \mathrm{R}}=\frac{9}{2}=9: 2$
82. (D) As v $=\frac{\mathrm{hc}}{\lambda \mathrm{e}}-\emptyset_{0}$
$=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{2000 \times 10^{-10} \times 1}-5.01$
$=(6.21-5.01) \mathrm{ev}=1.2 \mathrm{ev}$
83. (C) The ratio of left mass to original mass
$=\frac{1}{16}=\left(\frac{1}{2}\right)^{4}$
$\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{\mathrm{t} / \mathrm{T}} \Rightarrow \mathrm{t}=4 \mathrm{~T}$
\therefore half life of the substance is
$\therefore \mathrm{T}=\frac{\mathrm{t}}{4}$
Here $\mathrm{t}=120$ days $\quad \therefore \mathrm{T}=\frac{120}{4}=30$ days
84. (A) function is defined if $4 x-x^{2} \geq 0 \Rightarrow x(4-x) \geq 0$

$$
\Rightarrow 0 \leq \mathrm{x}-\leq 4 \Rightarrow[0,4]
$$

Also $4-y^{2} y$ is a positive square root. So $y \geq 0$ \qquad range $=[0,2]$

$$
\begin{aligned}
& (x-2)^{2} \\
& \text { So } 4-y^{2} \geq 0
\end{aligned}
$$

85. (A) $\sin 2 \mathrm{~A}+\sin \mathrm{z} B=\sin 2 \mathrm{C}$

Or, $2 \sin (A+B) \operatorname{Cos}(A-B)=2 \operatorname{Sin} c \operatorname{Cos} C$

$$
\begin{aligned}
& \Rightarrow \operatorname{Sin} C \cos (A-B)=\operatorname{Sin} C \operatorname{Cos} C \\
& \Rightarrow C o s(A-B)=\operatorname{Cos} C[\ldots . C \pm 0] \\
& \Rightarrow A-B=C \\
& \Rightarrow A=B+C
\end{aligned}
$$

86. (D) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}=153 \Rightarrow \mathrm{n}=18$
87. ((B) $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\mathrm{A} \mathrm{P} \Rightarrow \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}$
$\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in $\mathrm{GP} \Rightarrow \mathrm{c}^{2}=\mathrm{bd}$
c, d, e are in $\mathrm{HP} \Rightarrow \mathrm{d}=\frac{2 \mathrm{ce}}{\mathrm{c}+\mathrm{e}}$

$$
\text { so } \mathrm{c}^{2}=\frac{\mathrm{a}+\mathrm{c}}{2}, \frac{2 \mathrm{ce}}{\mathrm{c}+\mathrm{e}}
$$

$$
\Rightarrow c^{2}=\mathrm{ae} \quad \Rightarrow \mathrm{a}, \mathrm{c}, \mathrm{e} \text { are in ap }
$$

88.

(C) $\frac{a=i b}{c+i d} \times \frac{c-i d}{c-i d}=\frac{a c+b d}{c^{2}+d^{2}}+i \frac{\left(b c _a d\right)}{c^{2}+d^{2}}$ which is purely real if $b c-a d=0$

$$
\Rightarrow \mathrm{ad}=\mathrm{bc}
$$

89.

$$
\text { (D) } \begin{aligned}
\operatorname{tn}= & \frac{1+2+2^{2}+\ldots \ldots . .+2^{n-1}}{n!}=\frac{2^{n}-1}{n!}=\frac{2 n}{n!}-\frac{1}{n!} \\
& \sum_{n=1}^{\infty} \operatorname{tn}=\sum_{n=1}^{\infty} \frac{2 n}{n!}-\sum_{n=1}^{\infty} \frac{\Delta}{n!}=e^{2}-e
\end{aligned}
$$

90. (D) Given $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
& \vec{a}+\vec{b}=-\vec{c} \\
& (\vec{a}+\vec{b})^{2}=(-\vec{c})^{2} \\
\Rightarrow & 2 \cdot 3 \cdot 5 \cos \theta=15 \\
\Rightarrow & \cos \theta=\frac{1}{2} \Rightarrow \theta 60^{\circ}
\end{aligned}
$$

91. (C) The equation of bisectors of angle between the lines $a x^{2}-2 h x y+b y^{2}=0$, is

$$
-h\left(x^{2}-y^{2}\right)=(a-b) x y \text { ie. } h\left(x^{2}-y^{2}\right)+(a-b) x y=0
$$

If $y=m x$ is one of the bisectors ten

$$
\begin{aligned}
& \mathrm{h}\left(\mathrm{x}^{2}-\mathrm{m}^{2} \mathrm{x}^{2}\right)+(\mathrm{a}-\mathrm{b}) \mathrm{x} \cdot \mathrm{mx}=0 \\
& \Rightarrow \mathrm{~h}\left(1-\mathrm{m}^{2}\right)+(\mathrm{a}-\mathrm{b}) \mathrm{m}=0
\end{aligned}
$$

92. (B) The circles cut orthogonally if $2 g_{1} g_{2}+2 f_{1} f_{2}=C_{1}+C_{2}$

$$
\begin{aligned}
& \Rightarrow 2 \cdot \lambda \cdot 2+2 \cdot 3 \cdot 1=1+0 \\
& \Rightarrow 4 \lambda+6=1 \quad \Rightarrow \lambda=-5 / 4
\end{aligned}
$$

93. (B) Parabola is $\mathrm{y}^{2}=\mathrm{kx}-8 \Rightarrow \mathrm{y}^{2}=\frac{4 . k}{4}\left(x-\frac{8}{k}\right)$

Equation of directix $\rightarrow x-1=0$

$$
\begin{aligned}
& \text { So, } 1=\frac{8}{\mathrm{k}}-\frac{\mathrm{k}}{4} \\
& \Rightarrow 4 \mathrm{k}=32-\mathrm{k}^{2} \\
& \Rightarrow \mathrm{k}^{2}-4 \mathrm{k}-32=0 \\
& \Rightarrow \mathrm{k}=8,-4
\end{aligned}
$$

94. (A) coordinates of $A=(3 \mathrm{a}, 0,0)$

$$
\begin{array}{ll}
" & \mathrm{~B}=(0,3 \mathrm{~b}, 0) \\
" & \mathrm{C}=(0,0,3 \mathrm{c})
\end{array}
$$

95.

(C) $y=\sqrt{\sin x+y} \Rightarrow y^{2} \sin x+y$

$$
\Rightarrow 2 y \frac{d y}{d x} \cos x+\frac{d y}{d x} \Rightarrow(2 y-1) \frac{d y}{d x}-\cos x=0
$$

96. (A) $f^{1}(x)=\sec ^{2} x-1=\tan ^{2} x>0$
97.

(D) $\mathrm{f}^{1}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\frac{1}{1+\mathrm{x}^{2}} \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\tan ^{-1} \mathrm{x}+\mathrm{c}$

$$
\begin{aligned}
& \Rightarrow f^{1}(0)=1+0+c \\
& \Rightarrow 1=1+0+C \Rightarrow C=0
\end{aligned}
$$

So, $\mathrm{fe}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\tan ^{-1} \mathrm{x}$
98.
(B) Along x - axis $\mathrm{y} \mathrm{u} \Rightarrow \mathrm{x} 0,4$
99. (C)
100. (A)

