KANTIPUR ENGINEERING COLLEGE

Dhapakhel, Lalitpur
Model Entrance Test (2073)

Solution Set: II (B)

Section: I

1. (B)
2. (C)
3. (A)
4. (D)
5. (D)
6. (D)
7. (A)
8. (A)
9. (A)
10. (C)
11. (C)
12. (C)
13. (B)
14. (B)
15. (B) If $\mathrm{A} \subseteq \mathrm{B}$ then $\mathrm{B}^{1} \subseteq \mathrm{~A}^{1}$ so $\mathrm{B}^{1}-\mathrm{A}^{1}=\theta$
16. (B) $x^{2}-6 x+13=x^{2}-6 x+9+4=(x-3)^{2}+4$
17. (A) $\operatorname{Sin} x=-\frac{\sqrt{3}}{2}$ and $\cos x=\frac{1}{2}$. Here sine is negative and cosine is positive so angle lies in $4^{\text {th }}$ quadrant. So $x=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$
\therefore common general solution is $\mathrm{x}=2 \mathrm{n} \pi+\frac{5 \pi}{3}$
18. (C) we have $|\operatorname{adj} A|=|A|^{n-1}$

$$
=4^{3-1}=16
$$

19. (D) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=\lim _{y \rightarrow 0} y \sin \frac{1}{y}=\left(\lim _{y \rightarrow 0} y\right) \times\left(\lim _{y \rightarrow 0} \sin \frac{1}{y}\right)=0$
20. (D) $y=e^{-x} \frac{d y}{d x}=-e^{-x} \frac{d^{2} y}{d x^{2}}=e^{-x} y$
21. (A) $\int \tan x d x=\log \sec x+c=-\log \cos x+c$
22. (C) We have $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|$

$$
\Rightarrow \cos \theta=1 \Rightarrow \theta=0^{\circ}
$$

23. (B) Centroid $=\left(\frac{3+\mathrm{c}}{3}, \frac{\mathrm{a}+\mathrm{b}-3)}{3}\right)$

As centre lies on $x-a x i s$, so $\frac{a+b-3}{3}=0 \Rightarrow a+b=3$
24. (B) If $k_{1}-2 k, 3 k$ are de's then

$$
\begin{aligned}
& \mathrm{k}^{2}+(-2 \mathrm{k})^{2}+(3 \mathrm{k})^{2}=1 \\
& \quad 14 \mathrm{k}^{2}=1 \Rightarrow \mathrm{k}= \pm \frac{1}{\sqrt{14}}
\end{aligned}
$$

25. (D)
26. (C)
27. (A)
28. (D)
29. (B)
30. (A)
31. (A)
32. (C)
33. (C)
34. (B)
35. (D)
36. (D)
37. (C)
38. (A) Here phase difference is constant and hence five periods must be equal i.e., velocities must be equal
39. (B) The displacement can be both positive and negative
40. (D) When electric fan is switched on in a closed room, the electric energy is converted into mechanical energy, which in turn is converted into heat energy. As a result, the kinetic energy of translational of molecules of air increases. Therefore, the temperature of room increases
41. (A) The critical angle for diamond is small due to high refractive index. So, large scale total internal reflection takes place
42. (C) Photoelectric effect can be explarianced on the basis of quantum theory.
43. (A) Electric field inside a charged conductor is zero and hence the charge being on outer surface
44. (A) $H=v i t=\frac{v^{2}}{R} \times t$

Keeping v constant, when R is doubled, $(\mathrm{H} / \mathrm{t})$ is halved
46. (C) In the rearrangement of the magnetic domains some work is done and the energy dissipated in the process is propotional to the area enclosed by hysteris loop
47. (B) Diameter has no effect on frequency
48. (C) When a charged particle enters the magnetic field making angle other than 90°, the path is helix
49. (B)
50. (D)
51. (D) Solution:

$$
\text { No. of mol of hydrogen }=\frac{\text { Wt.in gram }}{\text { Molar wt. }}=\frac{5}{2}=2.5
$$

$$
1 \mathrm{~mol}=6.023 \times 10^{23} \text { molecules }
$$

$$
2.5 \mathrm{~mol}=2.5 \times 6.023 \times 10^{23}=1.505 \times 10^{24} \text { molecules }
$$

52. (B)

> 53. (C)
54. (A)
55. (A)
56. (B)
57. (C)
58. (D)
59. (B)
60. (D)

Section: II
61. (A)
62. (C)
63. (C) domain $=\mathrm{R}$ as it is defined for all $\mathrm{x} \in \mathrm{R}$

$$
\text { range }=\left[\frac{1}{3-(-1)}, \frac{1}{3-1}\right]=\left[\frac{1}{4}, \frac{1}{2}\right]
$$

64. (A) we know that $\cos \mathrm{B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}}=\frac{\mathrm{c}^{2}+4 \mathrm{c}^{2}-9 \mathrm{c}^{2}}{2 \cdot \mathrm{c} 2 \mathrm{c}}=\frac{-4 \mathrm{c}^{2}}{4 \mathrm{c}^{2}}=-1$
65. (B) (C) $n=\frac{n(n-3)}{2} \Rightarrow 2=n-3 \Rightarrow n=5$
66. (D) $\mathrm{t}_{4}=\mathrm{p} \Rightarrow \mathrm{ar}^{3}=\mathrm{p}$

$$
\begin{aligned}
& \mathrm{t}_{7}=\mathrm{q} \Rightarrow \mathrm{ar}^{6} \Rightarrow \mathrm{br}=\mathrm{q}^{2} \\
& \mathrm{t}_{10}=\mathrm{r} \Rightarrow \mathrm{ar}^{9}=\mathrm{r}
\end{aligned}
$$

67. (A) Equating real and imaginary parts, we get

$$
\begin{aligned}
& \mathrm{x}=\mathrm{k}+3, \quad \mathrm{y}=\sqrt{5-\mathrm{k}^{2}} \\
& (\mathrm{x}-3)^{2}=\mathrm{k}^{2} \quad \mathrm{y}^{2}=5-\mathrm{k}^{2} \\
& \Rightarrow(\mathrm{x}-3)^{2}+\mathrm{y}^{2}=5
\end{aligned}
$$

68. (A) $\log \left(1-5 x+6 x^{2}\right)=\log \left(6 x^{2}-3 x-2 x+1\right)$

$$
\begin{aligned}
& =\log _{0}\{3 x(2 x-1)-1(2 x-1)\} \\
& =\log _{e}(2 x-1)(3 x-1) \\
& =\log _{e}(1-2 x)+\log _{e}(1-3 x) \\
& =2 x-\frac{(2 x)^{2}(2 x)^{3}}{2}-\ldots \ldots \ldots+\left[3 x-\frac{(3 x)^{2}}{2}-\frac{(3 x)^{2}}{3}-\right.
\end{aligned}
$$

Coeff. of $\mathrm{x}^{3}=-\frac{8}{3}-\frac{27}{3}=-\frac{35}{3}$
69. (C)

$$
\begin{aligned}
& |\vec{a}|=\sqrt{3^{2}+(-5)^{2},|\vec{b}|=\sqrt{6^{2}+(3)^{2}}} \\
& \overrightarrow{\mathrm{a} \times \overrightarrow{\mathrm{b}}=39 \overrightarrow{\mathrm{k}}, \quad|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=39}
\end{aligned}
$$

So, $|\vec{a}|:|\vec{b}|:|\vec{a} x \vec{b}|=\sqrt{34}: \sqrt{45}: 39$
70. (C) Equation of bisectors is $h\left(x^{2}-y^{2}\right)=(a-b) x y$

Combined equation of axes is $x y=0$
So $h=0$
71. (D) $2 \mathrm{nr}=10 \pi \Rightarrow \mathrm{r}=5$

Equation circle is $(x-2)^{2}+(y+3)^{2}=5^{2}$

$$
\text { ie. } x^{2}+y^{2}-4 x+6 y-12=0
$$

72. (D) The line is $1 x+m y+n=0$ ie. $y=\frac{1}{m} x-\frac{n}{m}$ is

$$
\text { tangent to } y^{2}=4 a x \text { if }-\frac{n}{m}=\frac{a}{-\frac{1}{m}} \Rightarrow \ln =a^{2}
$$

73. (B) equation of plan is $(2-0)(x-2)+(6-0)(y-6)+(3-0)(z-3)=0$

$$
2 x-4+6 y-36+3 z-9=0
$$

ie. $2 x+6 y+3 z=49$
74. (B) $y=\sin x-\cos x$

$$
\begin{aligned}
& \frac{d y}{d x}=\cos x+\sin x \\
& \frac{d^{2} y}{d x^{2}}=-\sin x+\cos x \\
& \frac{d^{3} y}{d x^{3}}=-\cos x-\sin x \\
& \frac{d^{4} 4}{d x^{4}}=\sin x-\cos x \\
& \text { and soon }
\end{aligned}
$$

75.

(D) (B) $\mathrm{f}^{1}(\mathrm{x})=\mathrm{x}^{\mathrm{x}}\left(1+\log _{\mathrm{e}} \mathrm{x}\right)$

For stationary point $f^{1}(x)=0$

$$
\begin{aligned}
& \Rightarrow 1+\log _{\mathrm{e}} \mathrm{x}=0 \\
& \Rightarrow \log _{\mathrm{e}} \mathrm{x}=-1 \\
\Rightarrow \mathrm{x}= & \frac{1}{\mathrm{e}}
\end{aligned}
$$

76.

(D) $\int_{0}^{\frac{\pi}{2}} \frac{(\sin x+\cos x)^{2}}{\sqrt{1+\sin 2 x}} d x=\int_{0}^{\frac{\pi}{2}}(\sin x+\cos x) d x$

$$
\begin{aligned}
& =(\sin x-\cos x)_{0} \pi / 2 \\
& =(1-0)-(0-1)
\end{aligned}
$$

$$
=1+1=2
$$

77. (B) Solving $y=x^{2}$ and $y=x$,

$$
\begin{aligned}
& x=0,1 \\
& \begin{aligned}
& \therefore \text { Required are } a=\int_{0}^{1}\left(y_{1}-4_{2}\right) d x \\
&=\int_{0}^{1}\left(x^{2}-x\right) d x \\
&=\left[\frac{1^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1} \\
&=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}=\frac{1}{6} \\
& \text { 79. (A) }
\end{aligned}
\end{aligned}
$$

78. (C)
79. (B)
80. (C) Given that $\mathrm{R}=\mathrm{A}=\mathrm{B}$.

$$
\begin{aligned}
& \text { Also, } \mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta \\
& \Rightarrow \mathrm{R}^{2}=2 \mathrm{R}^{2}(1+\cos \theta) \\
& \Rightarrow \frac{1}{2}-1=\cos \theta \\
& \Rightarrow \cos \theta=-\frac{1}{2} \quad \Rightarrow \theta=120^{\circ}
\end{aligned}
$$

83. (D) Using $v=u+g t$, we have,

$$
\begin{align*}
& 0=\mathrm{u}-\mathrm{gT} \Rightarrow \mathrm{u}=\mathrm{gT} \\
& \text { Also, } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{gs} \Rightarrow 0=\mathrm{u}^{2}-2 \mathrm{gH} \\
& \therefore \mathrm{H}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{g}^{2} \mathrm{~T}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{gT}^{2}}{2} \ldots \ldots \ldots \ldots \ldots \tag{i}
\end{align*}
$$

Let h be the distance travelled in time t, then,
$\mathrm{h}=\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}=\mathrm{gtT}-\frac{1}{2} \mathrm{gt}^{2}$. \qquad (ii)

Now, $\mathrm{h}-\mathrm{H}=\mathrm{gTt}-\frac{1}{2} \mathrm{gt}^{2}-\frac{1}{2} \mathrm{gT}^{2}=-\frac{\mathrm{g}}{2}(\mathrm{~T}-\mathrm{t})^{2}$

$$
\therefore \mathrm{h}=\mathrm{H}-\frac{\mathrm{g}}{2}(\mathrm{~T}-\mathrm{t})^{2}
$$

84. (B) $u=0, v=20 \mathrm{~m} / \mathrm{s}$ and $t=10 \mathrm{sec}$
$\therefore \mathrm{v}=\mathrm{u}+\mathrm{at} \Rightarrow 20=\mathrm{ax} 10 \Rightarrow \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$
Further $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}=0+\frac{1}{2} \times 2 \times(10)^{2}=100 \mathrm{~m}$
\therefore Work $=$ Force \times Distance $=$ Mass \times Acceleration \times Distance $=100 \times 2 \times 100=2 \times 10^{4} \mathrm{~J}$
85. (D) $\alpha=\frac{10}{2} \mathrm{rad} / \mathrm{s}^{2}=5 \mathrm{rad} / \mathrm{s}^{2}$
$\mathrm{I}=\mathrm{MR}^{2}=\frac{1}{2} \times(0.2)^{2}=0.02 \mathrm{kgm}^{2}$
$\mathrm{T}=\mathrm{I} \alpha=5 \times 0.02=0.10 \mathrm{Nm}$
86. (A) The radius R of the single drop so firmed will be $\mathrm{R}=2^{1 / 3} \mathrm{r}$, where $\mathrm{r}=$ radius of each drop
For each drop, $m g=6 \pi \eta r v$
For combined drop, $2 \mathrm{mg}=6 \pi \eta R v^{\prime}$
From equation (i) and (ii),
$2 \mathrm{x} 6 \pi \eta \mathrm{rv}=6 \pi \eta \mathrm{Rv} \mathrm{v}^{\prime} \Rightarrow \mathrm{v}^{\prime}=\frac{2 \mathrm{rv}}{\mathrm{R}}=\frac{2 \mathrm{rv}}{2^{1 / 3} \mathrm{r}}=2^{2 / 3} \mathrm{v}$
87. (C)

$$
\begin{aligned}
& \frac{\mathrm{F}_{1}-32}{9}=\frac{\mathrm{C}_{1}}{5} \text { and } \frac{\mathrm{F}_{2}-32}{9}=\frac{\mathrm{C}_{2}}{5} \\
& \Rightarrow \frac{\mathrm{~F}_{1}-\mathrm{F}_{2}}{9}=\frac{\mathrm{C}_{1}-\mathrm{C}_{2}}{5} \\
& \Rightarrow \frac{\mathrm{~F}_{1}-\mathrm{F}_{2}}{9}=\frac{25^{\circ}}{5}=5 \\
& \therefore \mathrm{~F}_{1}-\mathrm{F}_{2}=9 \times 5=45^{\circ} \mathrm{F}
\end{aligned}
$$

88. (C) $\mathrm{P}=\frac{1}{3} \rho \mathrm{v}^{-2}=\frac{2}{3}\left(\frac{1}{2} \rho \mathrm{v}^{-2}\right)=\frac{2}{3} \mathrm{E}$
89. (A)

Given $\frac{a_{1}}{a_{2}}=\frac{3}{5}$
Also, $\frac{\sqrt{I_{1}}}{\sqrt{I_{2}}}=\frac{3}{5}$

$$
\left[\because \mathrm{I}_{1} \alpha \mathrm{a}_{1}^{2}\right]
$$

Intensity is maximum when $\cos \emptyset=1$,
$\therefore \mathrm{I}_{\text {max }}=\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
And intensity is minimum when $\cos \varnothing=0$,
$\therefore \mathrm{I}_{\text {min }}=\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}$
$\therefore \frac{I_{\text {max }}}{I_{\text {min }}}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}=\frac{\left(\frac{3}{5}+1\right)^{2}}{\left(\frac{3}{5}-1\right)^{2}}=64 / 4=16: 1$
90. (B) We know that $\frac{\sin i}{\sin r}=\frac{v_{1}}{v_{2}}$

Where v_{1} and v_{2} are the velocities of light in denser and rarer medium respectively.
Now, $\frac{\operatorname{Sin} \mathrm{i}}{\operatorname{Sin} r}=\frac{\mu_{1}}{\mu_{2}}$
Given that, $\mu_{1}=\mathrm{v}$ and $\mu_{2}=2 \mathrm{v}$
$\frac{\operatorname{Sin} \mathrm{i}}{\operatorname{Sin} \mathrm{r}}=\frac{\mathrm{v}}{2 \mathrm{v}}=\frac{1}{2}$
If $\mathrm{r}=90^{\circ}$, then $\mathrm{i}=\mathrm{C}$
So, $\operatorname{Sin} \mathrm{C}=1 / 2 \therefore \mathrm{C}=30^{\circ}$
91. (D) Here $\mathrm{v}=-40 \mathrm{~cm}, \mathrm{u}=\infty$

Using the lens formula,

$$
\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}, \text { we get },
$$

$$
\mathrm{F}=-40 \mathrm{~cm}=-0.40 \mathrm{~m} \therefore \mathrm{P}=-\frac{1}{0.40}=-2.5 \mathrm{D}
$$

92. (A) $\mathrm{B}=\mu_{\mathrm{o}} \mathrm{H}=4 \pi \times 10^{-7} \times 28=352 \times 10^{-7} \mathrm{~T}=352 \times 10^{-3}$ gauss $=0.352$ gauss
93. (A) $\mathrm{F}_{\mathrm{e}}=9 \times 10^{9}\left(\frac{\mathrm{exe}}{\mathrm{r}^{2}}\right)$ and $\mathrm{F}_{\mathrm{G}}=6.6 \times 10^{-11}\left(\frac{\mathrm{~m}_{\mathrm{e}} \times \mathrm{m}_{\mathrm{e}}}{\mathrm{r}^{2}}\right)$
$\frac{\mathrm{F}_{\mathrm{G}}}{\mathrm{F}_{\mathrm{e}}}=\frac{6.6 \times 10^{-11}}{9 \times 10^{9}}\left(\frac{\mathrm{~m}_{\mathrm{e}}}{\mathrm{e}}\right)^{2}=\frac{6.6 \times 10^{-11}}{9 \times 10^{9}}\left(\frac{9.1 \times 10^{-31}}{1.6 \times 10^{-19}}\right)^{2} \cong 10^{-42}$
94. (C)

$$
\begin{aligned}
e & =\mathrm{N} \frac{\mathrm{~d} \emptyset}{\mathrm{dt}}=\mathrm{N} \frac{\mathrm{~d}(\mathrm{BA})}{\mathrm{dt}}=\mathrm{NA} \frac{\mathrm{~d}(\mathrm{~B})}{\mathrm{dt}} \\
& =500 \times 100 \times 10^{-4} \times\left(\frac{0.1-0}{0.1}\right)=5 \mathrm{~V}
\end{aligned}
$$

95. (C) $\mathrm{E}_{\mathrm{n}}=\frac{13.6}{\mathrm{n}^{2}}=\frac{13.6}{100}=0.136 \mathrm{eV}$
96. (D) In this reaction, the energy released will be in the form of heat energy.

Energy released $=$ Binding energy of $2 \mathrm{H}^{\mathrm{e} 4}$ minus twice the binding energy of $1 \mathrm{H}^{2}=28-2$ x $2.2=23.6 \mathrm{Mev}$
97. (D) Solution: 127 g of Iodine (1 g eqvt.) is liberated by 96,500 coulomb 10 of Iodine is liberated by

$$
=\frac{96500}{127} \times 10 \text { coulomb }
$$

Let current strength be $=\mathrm{I}$, Time ir $127 \quad$) seconds
The quantity of electricity, Q , is given by
$\mathrm{Q}=\mathrm{I} \times$ time in seconds,

$$
\begin{aligned}
\frac{\mathrm{Q}}{\mathrm{t}}= & \frac{96500 \times 10}{127 \times 3600} \\
& =2.11 \text { ampere }
\end{aligned}
$$

98. (B) Solution:

250 ml of $0.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 600 ml of 0.25 M KOH
250 ml of $0.8 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 600 ml of 0.25 N KOH 200 ml of $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 150 ml of 1 N KOH
As the vol. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is greater than KOH , the solution is acidic

$$
\begin{aligned}
& \mathrm{V}_{1}=(200-150)=50 \mathrm{ml} \quad ; \mathrm{V}_{2}=(250+600)=850 \mathrm{ml} \\
& \mathrm{~S}_{1}=1 \mathrm{~N} \quad \mathrm{~S}_{2}=? ; \mathrm{V}_{1} \mathrm{~S}_{1}=\mathrm{V}_{2} \mathrm{~S}_{2} \\
& =0.0588 \mathrm{~N} \quad \mathrm{~S}_{2}=\frac{50 \times 1}{850}
\end{aligned}
$$

99. (B)
100. (D)
