KANTIPUR ENGINEERING COLLEGE

Dhapakhel, Lalitpur Model Entrance Test (2073)

Solution Set: II (B)

Section: I

1. (B)

3. (A)

4. (D)

5. (D)

6. (D)

8. (A

9. (A)

10. (C)

11. **(C)**

13. (B)

14. (B)

15. (B) If $A \subseteq B$ then $B^1 \subseteq A^1$ so $B^1 - A^1 = \theta$

16. (B) $x^2 - 6x + 13 = x^2 - 6x + 9 + 4 = (x - 3)^2 + 4$

17. (A) Sinx = $-\frac{\sqrt{3}}{2}$ and cos x = $\frac{1}{2}$. Here sine is negative and cosine is positive so angle

lies in 4th quadrant. So $x = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$

 $\therefore \text{ common general solution is } x = 2n\pi + \frac{5\pi}{3}$

18. (C) we have $|adj A| = |A|^{n-1}$

$$=4^{3-1}=16$$

19. (D)
$$\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{y \to 0} y \sin \frac{1}{y} = \left(\lim_{y \to 0} y\right) \times \left(\lim_{y \to 0} \sin \frac{1}{y}\right) = 0$$

20. (D)
$$y = e^{-x} \frac{dy}{dx} = -e^{-x} \frac{d^2y}{dx^2} = e^{-x} y$$

21. (A)
$$\int \tan x \, dx = \log \sec x + c = -\log \cos x + c$$

22. (C) We have $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$

$$\Rightarrow \cos\theta = 1 \Rightarrow \theta = 0^0$$

23. (B) Centroid =
$$\left(\frac{3+c}{3}, \frac{a+b-3}{3}\right)$$

As centre lies on x – axis, so $\frac{a+b-3}{3} = 0 \Rightarrow a+b=3$

24. (B) If $k_1 - 2k$, 3k are de's then $k^2 + (-2k)^2 + (3k)^2 = 1$

$$14k^2 = 1 \implies k = \pm \frac{1}{\sqrt{14}}$$

25.

26. (C)

27. (A)

28. (D)

29. (B)

30. (A)

(D)

31. (C)

32. (C)

33. (B)

34. (D)

35. (A)

36. (B)

37. (D)

38. (C)

- 39. (A) Here phase difference is constant and hence five periods must be equal i.e., velocities must be equal
- 40. (B) The displacement can be both positive and negative
- 41. (D) When electric fan is switched on in a closed room, the electric energy is converted into mechanical energy, which in turn is converted into heat energy. As a result, the kinetic energy of translational of molecules of air increases. Therefore, the temperature of room increases
- 42. (A) The critical angle for diamond is small due to high refractive index. So, large scale total internal reflection takes place
- 43. (C) Photoelectric effect can be explarianced on the basis of quantum theory.
- 44. (A) Electric field inside a charged conductor is zero and hence the charge being on outer surface
- 45. (A) $H = v i t = \frac{v^2}{R} x t$

Keeping v constant, when R is doubled, (H/t) is halved

- 46. (C) In the rearrangement of the magnetic domains some work is done and the energy dissipated in the process is proportional to the area enclosed by hysteris loop
- 47. (B) Diameter has no effect on frequency
- 48. (C) When a charged particle enters the magnetic field making angle other than 90°, the path is helix
- 49. (B) 50. (D)
- 51. (D) Solution:

No. of mol of hydrogen =
$$\frac{\text{Wt.in gram}}{\text{Molar wt.}} = \frac{5}{2} = 2.5$$

 $1 \text{ mol} = 6.023 \times 10^{23} \text{molecules}$

$$2.5 \text{ mol} = 2.5 \times 6.023 \times 10^{23} = 1.505 \times 10^{24} \text{molecules}$$

Section: II

- 61. (A) 62. (C)
- 63. (C) domain = R as it is defined for all $x \in R$

range =
$$\left[\frac{1}{3-(-1)}, \frac{1}{3-1}\right] = \left[\frac{1}{4}, \frac{1}{2}\right]$$

64. (A) we know that
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{c^2 + 4c^2 - 9c^2}{2 \cdot c \cdot 2c} = \frac{-4c^2}{4c^2} = -1$$

65. (B) (C)
$$n = \frac{n(n-3)}{2} \Rightarrow 2 = n-3 \Rightarrow n = 5$$

66. (D)
$$t_4 = p \Rightarrow ar^3 = p$$

$$t_{7=} q \Rightarrow ar^6 \Rightarrow br = q^2$$

 $t_{10} = r \Rightarrow ar^9 = r$

67. (A) Equating real and imaginary parts, we get

$$x = k + 3, y = \sqrt{5 - k^2}$$

$$(x - 3)^2 = k^2 y^2 = 5 - k^2$$

$$\Rightarrow (x - 3)^2 + y^2 = 5$$
(A) $\log (1 - 5x + 6x^2) = \log (6x^2 - 3x - 2x + 1)$

68. (A)
$$\log (1 - 5x + 6x^2) = \log (6x^2 - 3x - 2x + 1)$$

 $= \log_0 \{3x (2x - 1) - 1(2x - 1)\}$
 $= \log_e (2x - 1) (3x - 1)$
 $= \log_e (1 - 2x) + \log_e (1 - 3x)$

$$=2x-\frac{(2x)^2-(2x)^3}{2}-\dots+\left[3x-\frac{(3x)^2}{2}-\frac{(3x)^2}{3}-\dots\right]$$

Coeff. of
$$x^3 = -\frac{8}{3} - \frac{27}{3} = -\frac{35}{3}$$

Coeff. of
$$\mathbf{x}^3 = -\frac{8}{3} - \frac{27}{3} = -\frac{35}{3}$$

69. (C) $|\vec{a}| = \sqrt{3^2 + (-5)^2}, |\vec{b}| = \sqrt{6^2 + (3)^2}$
 $\vec{a} \times \vec{b} = 39 \vec{k}, \quad |\vec{a} \times \vec{b}| = 39$
So, $|\vec{a}|: |\vec{b}|: |\vec{a} \times \vec{b}| = \sqrt{34}: \sqrt{45}: 39$

- (C) Equation of bisectors is $h(x^2 y^2) = (a b) xy$ 70. Combined equation of axes is xy = 0So h = 0
- 71. (D) $2n r = 10\pi \implies r = 5$ Equation circle is $(x-2)^2 + (y+3)^2 = 5^2$ ie. $x^2 + y^2 - 4x + 6y - 12 = 0$
- (D) The line is lx + my + n = 0 ie. $y = \frac{1}{m}x \frac{n}{m}$ is 72. tangent to $y^2 = 4ax$ if $-\frac{n}{m} = \frac{a}{1} \Rightarrow ln = am^2$

73. (B) equation of plan is
$$(2-0)(x-2) + (6-0)(y-6) + (3-0)(z-3) = 0$$

 $2x-4+6y-36+3z-9=0$
ie. $2x+6y+3z=49$

74. (B)
$$y = \sin x - \cos x$$

$$\frac{dy}{dx} = \cos x + \sin x$$

$$\frac{d^2y}{dx^2} = -\sin x + \cos x$$

$$\frac{d^3y}{dx^3} = -\cos x - \sin x$$

$$\frac{d^44}{dx^4} = \sin x - \cos x$$
and soon

75. (D) (B)
$$f^{1}(x) = x^{x} (1 + \log_{e} x)$$

For stationary point $f^{1}(x) = 0$

$$\Rightarrow 1 + \log_{e} x = 0$$

$$\Rightarrow \log_{e} x = -1$$

$$\Rightarrow x = \frac{1}{e}$$

76. (D)
$$\int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)^{2}}{\sqrt{1 + \sin 2x}} dx = \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) dx$$

$$= (\sin x - \cos x)_{0}^{\pi/2}$$

$$= (1 - 0) - (0 - 1)$$

$$= 1 + 1 = 2$$
77. (B) Solving $y = x^{2}$ and $y = x$,
$$x = 0, 1$$

$$\therefore \text{ Required are } a = \int_{0}^{1} (y_{1} - 4_{2}) dx$$

77. (B) Solving
$$y = x^2$$
 and $y = x$, $x = 0, 1$

∴ Required are
$$a = \int_0^1 (y_1 - 4_2) dx$$

$$= \int_0^1 (x^2 - x) dx$$

$$= \left[\frac{1^3}{3} - \frac{x^2}{2} \right]_0^1$$

$$= \frac{1}{3} - \frac{1}{2} = -\frac{1}{6} = \frac{1}{6}$$

82. (C) Given that
$$R = A = B$$
.

Also,
$$R^2 = A^2 + B^2 + 2AB \cos\theta$$

$$\Rightarrow R^2 = 2R^2 (1 + \cos\theta)$$

$$\Rightarrow \frac{1}{2} - 1 = \cos\theta$$

$$\Rightarrow \cos\theta = -\frac{1}{2} \Rightarrow \theta = 120^\circ$$

83. (D) Using
$$v = u + gt$$
, we have,

Let h be the distance travelled in time t, then,

84. (B)
$$u = 0$$
, $v = 20$ m/s and $t = 10$ sec

$$v = u + at \implies 20 = a \times 10 \implies a = 2 \text{ m/s}^2$$

Further $s = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2}x + 2x(10)^2 = 100\text{m}$

: Work = Force x Distance = Mass x Acceleration x Distance =
$$100 \times 2 \times 100 = 2 \times 10^4 \text{ J}$$

81. (B)

85. (D)
$$\alpha = \frac{10}{2} \text{ rad/s}^2 = 5 \text{ rad/s}^2$$

$$I = MR^2 = \frac{1}{2} \times (0.2)^2 = 0.02 \text{ kgm}^2$$

$$T = I \alpha = 5 \times 0.02 = 0.10 \text{ Nm}$$

(A) The radius R of the single drop so firmed will be $R = 2^{1/3}r$, where r = radius of each 86. drop

$$2x 6\pi \eta rv = 6\pi \eta Rv' \implies v' = \frac{2rv}{R} = \frac{2rv}{2^{1/3}r} = 2^{2/3}v$$

89. (A)
Given
$$\frac{a_1}{a_2} = \frac{3}{5}$$
Also, $\frac{\sqrt{I_1}}{\sqrt{I_2}} = \frac{3}{5}$ [:: $I_1 \alpha a_1^2$]

Intensity is maximum when $\cos \emptyset = 1$,

$$\therefore I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$$

 $I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$ And intensity is minimum when $\cos \emptyset = 0$,

(B) We know that $\frac{\sin i}{\sin r} = \frac{v_1}{v_2}$ 90.

Where v_1 and v_2 are the velocities of light in denser and rarer medium respectively. Now, $\frac{\sin i}{\sin r} = \frac{\mu_1}{\mu_2}$

Now,
$$\frac{\sin i}{\sin r} = \frac{\mu_1}{\mu_2}$$

Given that, $\mu_1 = v$ and $\mu_2 = 2v$

$$\frac{\sin i}{\sin r} = \frac{v}{2v} = \frac{1}{2}$$
If $r = 90^{\circ}$, then $i = C$
So, $\sin C = 1/2 : C = 30^{\circ}$

91. (D) Here v = -40cm, $u = \infty$ Using the lens formula,

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$
, we get,
 $F = -40 \text{cm} = -0.40 \text{m} : P = -\frac{1}{0.40} = -2.5 \text{ D}$

92. (A)
$$B = \mu_o H = 4\pi \ x \ 10^{-7} \ x \ 28 = 352 \ x \ 10^{-7} \ T = \ 352 \ x \ 10^{-3} \ gauss = 0.352 \ gauss$$

93. (A)
$$F_e = 9 \times 10^9 \left(\frac{e \times e}{r^2}\right)$$
 and $F_G = 6.6 \times 10^{-11} \left(\frac{m_e \times m_e}{r^2}\right)$

$$\frac{F_G}{F_e} = \frac{6.6 \times 10^{-11}}{9 \times 10^9} \left(\frac{m_e}{e}\right)^2 = \frac{6.6 \times 10^{-11}}{9 \times 10^9} \left(\frac{9.1 \times 10^{-31}}{1.6 \times 10^{-19}}\right)^2 \cong 10^{-42}$$

94. (C)

$$e = N \frac{d\emptyset}{dt} = N \frac{d(BA)}{dt} = NA \frac{d(B)}{dt}$$

$$= 500 \times 100 \times 10^{-4} \times \left(\frac{0.1 - 0}{0.1}\right) = 5V$$

95. (C)
$$E_n = \frac{13.6}{n^2} = \frac{13.6}{100} = 0.136 \text{ eV}$$

- 96. (D) In this reaction, the energy released will be in the form of heat energy. Energy released = Binding energy of $2H^{e4}$ minus twice the binding energy of $1H^2 = 28-2$ x 2.2 = 23.6 MeV
- 97. (D) Solution: 127 g of Iodine (1 g eqvt.) is liberated by 96,500 coulomb 10 of Iodine is liberated by $=\frac{96500}{127} \times 10 \text{ coulomb}$ Let current strength be = I, Time in) seconds

The quantity of electricity, Q, is given by

 $Q = I \times time in seconds$,

$$\frac{Q}{t} = \frac{96500 \times 10}{127 \times 3600}$$
= 2.11 ampere

(B) Solution: 98.

Telephone: 5571004/5571005

250 ml of $0.4M H_2SO_4$ is mixed with 600 ml of 0.25M KOH250 ml of $0.8N H_2SO_4$ is mixed with 600 ml of 0.25N KOH200 ml of 1N H₂SO₄ is mixed with 150 ml of 1N KOH

As the vol. of H₂SO₄ is greater than KOH, the solution is acidic

$$V_1 = (200 - 150) = 50 \text{ ml}$$
; $V_2 = (250 + 600) = 850 \text{ ml}$

$$S_1 = 1 \text{ N}$$
 $S_2 = ? ; V_1 S_1 = V_2 S_2$

$$S_1 = 1 \text{ N}$$
 $S_2 = ?$; $V_1 S_1 = V_2 S_2$
= 0.0588 N $S_2 = \frac{50 \times 1}{850}$