KANTIPUR ENGINEERING COLLEGE Dhapakhel, Lalitpur Model Entrance Test (2073) Solution Set: II (A)

Section: I

1. (D)	2. (B)	3. (C)	4. (A)	5. (A)				
6. (B)	7. (C)	8. (D)	9. (B)	10. (D)				
11. (A)	12. (C)	13. (C)	14. (A)	15. (B)				
16. (D) 17. (A)	ELIA.							
Solution:			0					
No. of mol of hydrogen = $\frac{Wt.in gram}{Molar wt} = \frac{5}{2} = 2.5$								
$1 \text{ mol} = 6.023 \times 10^{23} \text{ molecules}$ 2.5 mol = 2.5 × 6.023 × 10 ²³ = 1.505 × 10 ²⁴ molecules								
18. (A)	19. (C)	20. (C)	21. (D)	22. <mark>(</mark> D)				
23. (B) 27. (C)	24. (B)	25. (D)	26. (B)					

Here phase difference is constant and hence five periods must be equal i.e., velocities must be equal.

28. (A)

The displacement can be both positive and negative.

29. (D)

When electric fan is switched on in a closed room, the electric energy is converted into mechanical energy, which in turn is converted into heat energy. As a result, the kinetic energy of translational of molecules of air increases. Therefore, the temperature of room increases.

30. (D)

The critical angle for diamond is small due to high refractive index. So, large scale total internal reflection takes place

31. (D)

Photoelectric effect can be explained on the basis of quantum theory.

32. (A)

Electric field inside a charged conductor is zero and hence the charge being on outer surface.

33. (A)

 $H = v i t = \frac{v^2}{R} x t$

Keeping v constant, when R is doubled, (H/t) is halved.

34. (A)

In the rearrangement of the magnetic domains some work is done and the energy dissipated in the process is proportional to the area enclosed by hysteris loop.

Telephone: 5571004/5571005

35. (C)

Diameter has no effect on frequency.

36. (C)

When a charged particle enters the magnetic field making angle other than 90° , the path is helix.

37.	(C) obvious							
			<i>p</i> 1					
38	(B) let other root be	$\beta_{\text{Then}} \alpha \beta_{-}$	$p = -\frac{1}{\alpha}$					
50.		$\gamma \alpha \implies = x = n\pi$	$+\alpha$					
39.	9. (B) $\csc 2x = \csc 2\alpha \rightarrow -x - n\pi \pm \alpha$							
40.	(B) $A2 - A + I = 0$							
	or $I = A - A2$							
	or $A-I = A-IA - A-I$	IAA						
	1e A - 1 = I - A							
41.	(B) $\frac{\sin 2x + \sin 2x}{\sin 5x - \sin 2x}$	$\frac{16x}{13x} = \lim_{x \to 0} \frac{2\cos 2x}{5\cos 5x}$	$\frac{x+6\cos 6x}{x-3\cos 3x} = \frac{2+6}{5-3} = \frac{8}{2} = 4$					
42.	(A) $f^{1}(x) = \frac{1}{x^{2}} f^{1}(x)$ (A) $\int \frac{dx}{\sqrt{1-x^{2}}} = \sin x$	$\int_{11}^{11} (x) = \frac{2}{x^3} At (1, x) = \frac{\pi}{2} - c dx$	1), $f^{11}(1) = 2$ $\cos^{-1}x + c$		10			
4 <mark>3</mark> .	(C) $\sqrt{-1}$		and					
<mark>44</mark> .	4. (D) $\vec{a}x\vec{b}$ and $\vec{b}x\vec{a}$ are both perpendicular to \vec{a} and \vec{b}							
<mark>45</mark> .	(D) Slope = 0 ,							
46 .	(A) 1. $(-k)$ + 2.2+ 3.	.1 = 0 ie $- k + 4 +$	$3 = 0 \Rightarrow k + 7$					
4 <mark>7</mark> .	(C)	48. (B)	49. (B)	50. (D)	51. (C)			
5 <mark>2.</mark>	(A)	53. (D)	54. (B)	55. (A)	56. (C)			
57.	(C)	58. (B)	59. (D)	60. (A)				
		0	Section: II					
61.	(B)	62. (D)	63. (C)	64. (A)				
65	(B)							
Sol	ution.							
501	127 g of Jodine (1	g egyt) is libe	rate(
	10 of Iodine is lib	erated by	$=\frac{96500}{1000} \times 10$ cc	ulomh				
		crated by	127 10 00					
	Let current strengt The quantity of ele $\Omega = I \times time in sec$	th be = I, Time i ectricity, Q, is g	n seconds = $1 \times 60 \times 60$ = iven by	= 3600 seconds				
		onds,						
	$I = \frac{q}{t} = 2.11$							
66	(D)							
So	(-)							
50	$250 \text{ ml of } 0.4 \text{M} \text{ H}_2 \text{SO}_4$ is mixed with 600 ml of 0.25M KOH							
	250 ml of 0.8N H-SO, is mixed with 600 ml of 0.25N KOU							

250 ml of $0.8N H_2SO_4$ is mixed with 600 ml of 0.25N KOH200 ml of $1N H_2SO_4$ is mixed with 150 ml of 1N KOH

As the vol. of H₂SO₄ is greater than KOH, the solution is acidic

$$V_1 = (200 - 150) = 50 \text{ ml}$$
; $V_2 = (250 + 600) = 850 \text{ ml}$
 $S_1 = 1 \text{ N}$ $S_2 = ?$; $V_1 S_1 = V_2 S_2$
 $= 0.0588 \text{ N}$ $S_2 = \frac{50 \times 1}{850}$
67. (A)
68. (C)
69. (A) Given that $R = A = B$.
Also, $R^2 = A^2 + B^2 + 2AB \cos \theta$
 $\Rightarrow R^2 = 2R^2 (1 \cos \theta)$
 $\Rightarrow \frac{1}{2} - 1 = \cos \theta$
 $\Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = 120^{\circ}$
70. (A) Using $v = u + gt$, we have,
 $0 = u + gT \Rightarrow u = gT$
Also, $v^2 = u^2 + 2gs \Rightarrow 0 = u^2 - 2gH$
 $\Rightarrow H = \frac{u^2}{2g} = \frac{g^2T^2}{2g} = \frac{gT^2}{2} \dots \dots \dots \dots (1)$
Let ho the distance travelled in time t, then,
 $h = ut - \frac{1}{2}gt^2 = g(T - \frac{1}{2}gt^2) \dots \dots \dots (1)$
Let ho the distance travelled in time t, then,
 $h = ut - \frac{1}{2}gt^2 = g(T - \frac{1}{2}gt^2) \dots \dots \dots (1)$
Now, $h = H = gT(-\frac{1}{2}gt^2) - \frac{1}{2}gT^2 = -\frac{g}{2}(T + 1)^2$
 $\Rightarrow h = H - \frac{g}{2}(T + 1)^2$
71. (C) $u = 0, v = 20m/s$ and $t = 10sec$
 $\Rightarrow v = u + at $\Rightarrow 20 = a \times 10 \implies a = 2 \text{ m/s}^2$
Further set $u + \frac{1}{2}a^2 = 0 + \frac{1}{2}x^2 \times (10)^2 = 100m$
 $\Rightarrow Work = Porce x Distance = Mass x Acceleration x Distance = 100 x 2 x 100 = 2 x 10^4 \text{ J}$
72. (B) $a = \frac{10}{12} \text{ rad}s^2 = 5 \text{ rad}s^2$
 $I = MR^2 = \frac{1}{2} \times (0.2)^2 = 0.02 \text{ kgm}^2$
 $T = Ia = 5 \times 0.02 = 0.10 \text{ Nm}$
73. (C) The radius R of the single drop so firmed will be $R = 2^{1/3}r$, where $r = \text{ radius of each drop}$
For each drop, $Dg = 6\pi R V \dots \dots$.(i)
For equation (i) and (ii),
 $2x 6mpv = 6m Rv' \Rightarrow v' = \frac{2RV}{g} = \frac{2RV}{2^{1/3}r} = 2^{2/3}v$
74. (B)
 $\frac{F_1 - S_2}{9} = \frac{C_1}{5} \text{ and } \frac{F_2 - 32}{9} = \frac{C_3}{5}$
 $\Rightarrow \frac{F_1 - F_2}{F_1 - F_2} = \frac{C_1 - C_2}{2}$
 $\Rightarrow \frac{F_1 - F_2}{F_1 - F_2} = \frac{2T^5}{5} = 5$$

Telephone: 5571004/5571005

$$: F_{1} - F_{2} = 9 \times 5 = 45^{\circ}F$$
75. (D) $P = \frac{1}{3} \rho v^{2} - \frac{2}{3} (\frac{1}{2} \rho v^{2}) = \frac{2}{3} E$
76. (D)
Given $\frac{a_{i}}{a_{2}} = \frac{3}{5}$
Also, $\frac{\sqrt{11}}{\sqrt{15}} = \frac{3}{5}$ [: $1_{1} \alpha a_{1}^{2}$]
Intensity is maximum when $\cos 0 = 1$,
 $\therefore I_{max} = (\sqrt{I_{1}} + \sqrt{I_{2}})^{2}$
And intensity is minimum when $\cos 0 = 0$,
 $\therefore I_{min} = (\sqrt{I_{1}} - \sqrt{I_{2}})^{2}$
 $\therefore \frac{I_{max}}{I_{min}} = (\sqrt{I_{1}} - \sqrt{I_{2}})^{2}$
 $(\frac{1}{\sqrt{1}} - \sqrt{I_{2}})^{2} = (\frac{2}{(\frac{3}{2} + 1)^{2}} - 64/4 = 16:1$
77. (D) We know that $\frac{\sin n}{\sin r} = \frac{v_{1}}{v_{2}}$
Where v_{1} and v_{2} are the velocities of light in denser and rarer medium respectively.
Now, $\frac{\sin 1}{\sin r} = \frac{w_{1}}{w_{2}}$
Given that, $\mu_{1} = v$ and $\mu_{2} = 2v$
 $\frac{\sin i}{\sin r} = \frac{v_{2}}{2}$
If $r = 90^{\circ}$, then $i = C$
So, $\sin C = 1/2 \therefore C = 30^{\circ}$
78. (A) Here $v = -40$ cm, $u = \infty$
Using the lens formula,
 $\frac{1}{v} - \frac{1}{u} = \frac{1}{r}$, we get,
 $F = -40$ cm $= -0.40$ m $\therefore P = -\frac{1}{0.40} = -2.5$ D.
79. (C) $B = \mu_{0}$ H $= 4\pi \times 10^{-7} \times 2B = 352 \times 10^{-7}$ T $= 352 \times 10^{-3}$ gauss $= 0.352$ gauss
80. (B) $F_{e} = 9 \times 10^{\circ} (\frac{e^{e}}{r^{2}})$ and $F_{G} = 6.6 \times 10^{-11} (\frac{m_{e} \times m_{e}}{r^{2}})$
 $\frac{F_{G}}{F_{e}} = \frac{6.6 \times 10^{-11}}{9 \times 10^{9}} (\frac{m}{e})^{2} = \frac{6.6 \times 10^{-11}}{9 \times 10^{9}} (\frac{9.1 \times 10^{-31}}{1.6 \times 10^{-31}})^{2} \approx 10^{-42}$
81. (B)
 $e = N \frac{d\theta}{dt} = N \frac{d(BA)}{dt} = NA \frac{d(B)}{dt}$
 $= 500 \times 100 \times 10^{-4} \times (\frac{0.1 - 0}{0.1}) = 5V$

82. (D) $E_n = \frac{13.6}{n^2} = \frac{13.6}{100} = 0.136 \text{ eV}$ 83. (C) In this reaction, the energy released will be in the form of heat energy. Energy released = Binding energy of $2H^{e4}$ minus twice the binding energy of $1 H^2 = 28-2$ x 2.2 = 23.6 Mev

84. (A) domain = R as it is defined for all $x \in R$ range = $\left| \frac{1}{3 - (-1)}, \frac{1}{3 - 1} \right| = \left[\frac{1}{4}, \frac{1}{2} \right]$ 85. (A) we know that $\cos B = \frac{1}{2ca}$ 86. (D) $n = \frac{n(n-3)}{2} \Rightarrow 2 = n-3 \Rightarrow n = 5$ $n \Rightarrow ar^3 = p$ 88. (C) Equating real and imaginary parts, we get x = k + 3, y = $\sqrt{5 - k^2}$ (x - 3)² = k² y² = 5 - k² ⇒ (x - 3)² + y² = 5 89. (D) $\log (1 - 5x + 6x^2) = \log (6x^2 - 3x - 2x + 1)$ $= \log_0 \{3x (2x-1) - 1(2x-1)\}$ $= \log_{e} (2x - 1) (3x - 1)$ 90 $= \log_{e} (1 - 2x) + \log_{e} (1 - 3x)$ $= 2x - \frac{(2x)^2}{2} \frac{(2x)^3}{3} - \dots + \left[3x - \frac{(3x)^2}{2} - \frac{(3x)^2}{3} \right]$ Coeff. of $x^3 = -\frac{8}{3} - \frac{27}{3} = -\frac{35}{3}$ 90. (D) $|\vec{a}| = \sqrt{3^2 + (-5)^2}, |\vec{b}| = \sqrt{6^2 + (3)^2}$ $\vec{a} \times \vec{b} = 39 \vec{k}$. $|\vec{a} \times \vec{b}| = 39$ So, $|\vec{a}| : |\vec{b}| : |\vec{a}x\vec{b}| = \sqrt{34} : \sqrt{45} : 39$ 91. (C) Equation of bisectors is $h(x^2 - y^2) = (a - b) xy$ Ċ Combined equation of axes is xy = 0So h = 092. (B) $2nr=10\pi \implies r=5$ Equation circle is $(x-2)^2 + (y+3)^2 = 5^2$ ie. $x^2 + y^2 - 4x + 6y - 12 = 0$ 93. (B) The line is lx + my + n = 0 ie. $y = \frac{1}{m}x - \frac{n}{m}$ is tangent to $y^2 = 4ax$ if $-\frac{n}{m} = -\frac{a}{1} \Rightarrow ln = am^2$ 94. (A) equation of plan is (2-0)(x-2) + (6-0)(y-6) + (3-0)(z-3) = 02x - 4 + 6y - 36 + 3z - 9 = 0ie. 2x + 6y + 3z = 49

Telephone: 5571004/5571005

95. (C)
$$y = \sin x - \cos x$$

$$\frac{dy}{dx} = \cos x + \sin x$$

$$\frac{d^2y}{dx^2} = -\sin x + \cos x$$

$$\frac{d^3y}{dx^3} = -\cos x - \sin x$$

$$\frac{d^44}{dx^4} = \sin x - \cos x$$
and so on
96. (A) f¹(x) = x^x(1 + \log_c x)
For stationary point f¹(x) = 0
 $\Rightarrow 1 + \log_c x = 0$
 $\Rightarrow \log_c x = -1$
 $\Rightarrow x = \frac{1}{e}$
97. (D) $\int_0^{\frac{x}{2}} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx = \int_0^{\frac{x}{2}} (\sin x + \cos x) dx$
 $= (\sin x - \cos x)e^{\pi x^2}$
 $= (1 - 0) - (0 - 1)$
 $= 1 + 1 = 2$
98. (B) Solving $y = x^2$ and $y = x$,
 $x = 0, 1$
 \therefore Required are $a = \int_0^1 (y_1 - 4_2) dx$
 $= \left[\frac{1^3}{3} - \frac{x^2}{2}\right]_0^1$
 $= \frac{1}{3} - \frac{1}{2} = -\frac{1}{6} = \frac{1}{6}$
99. (C)
100. (A)