KANTIPUR ENGINEERING COLLEGE
 Dhapakhel, Lalitpur
 Model Entrance Test (2073)
 Solution Set: II (A)

Section: I

1. (D)
2. (B)
3. (C)
4. (A)
5. (A)
6. (B)
7. (C)
8. (D)
9. (B)
10. (D)
11. (A)
12. (C)
13. (C)
14. (A)
15. (B)
16. (D) 17. (A)

Solution:
No. of mol of hydrogen $=\frac{\text { Wt. in gram }}{\text { Molar wt. }}=\frac{5}{2}=2.5$
$1 \mathrm{~mol}=6.023 \times 10^{23}$ molecules
$2.5 \mathrm{~mol}=2.5 \times 6.023 \times 10^{23}=1.505 \times 10^{24}$ molecules
18. (A)
19. (C)
20. (C)
21. (D)
22. (D)
23. (B)
24. (B)
25. (D)
26. (B)
27. (C)

Here phase difference is constant and hence five periods must be equal i.e., velocities must be equal.
28. (A)

The displacement can be both positive and negative.
29. (D)

When electric fan is switched on in a closed room, the electric energy is converted into mechanical energy, which in turn is converted into heat energy. As a result, the kinetic energy of translational of molecules of air increases. Therefore, the temperature of room increases.
30. (D)

The critical angle for diamond is small due to high refractive index. So, large scale total internal reflection takes place
31. (D)

Photoelectric effect can be explained on the basis of quantum theory.
32. (A)

Electric field inside a charged conductor is zero and hence the charge being on outer surface.
33. (A)
$H=v i t=\frac{v^{2}}{R} x t$
Keeping v constant, when R is doubled, (H/t) is halved.
34. (A)

In the rearrangement of the magnetic domains some work is done and the energy dissipated in the process is propotional to the area enclosed by hysteris loop.
35. (C)

Diameter has no effect on frequency.
36. (C)

When a charged particle enters the magnetic field making angle other than 90°, the path is helix.
37. (C) obvious
38. (B) let other root be β. Then $\alpha \beta=1$ so $\beta=\frac{1}{\alpha}$
39. (B) $\operatorname{cosec} 2 \mathrm{x}=\operatorname{cosec} 2 \alpha \Rightarrow=x=n \pi \pm \alpha$
40. (B) $\mathrm{A} 2-\mathrm{A}+\mathrm{I}=0$
or $\mathrm{I}=\mathrm{A}-\mathrm{A} 2$
or $\mathrm{A}-1=\mathrm{A}-1 \mathrm{~A}-\mathrm{A}-1 \mathrm{~A} \mathrm{~A}$
ie $\mathrm{A}-1=\mathrm{I}-\mathrm{A}$
41. (B)
$\lim _{x \rightarrow 0} \frac{\operatorname{Sin} 2 x+\sin 6 x}{\operatorname{Sin} 5 x-\operatorname{Sin} 3 x}=\lim _{x \rightarrow 0} \frac{2 \cos 2 x+6 \cos 6 x}{5 \cos 5 x-3 \cos 3 x}=\frac{2+6}{5-3}=\frac{8}{2}=4$
42. (A)
$f^{1}(x)=\frac{1}{x^{2}} f^{11}(x)=\frac{2}{x^{3}} A t(1,1), f^{11}(1)=2$
43. (C)
$\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+c=\frac{\pi}{2}-\cos ^{-1} x+c$ and
44. (D) $\vec{a} x \vec{b}$ and $\vec{b} x \vec{a}$ are both perpendicular to \vec{a} and \vec{b}
45. (D) Slope $=0$,
46. (A) $1 .(-\mathrm{k})+2 \cdot 2+3 \cdot 1=0$ ie $-\mathrm{k}+4+3=0 \Rightarrow \mathrm{k}+7$
47. (C)
52. (A)
57. (C)
48. (B)
49. (B)
54. (B)
59. (D)
50. (D)
51. (C)
56. (C)

Section: II

61. (B)
62. (D) 63. (C)
63. (A)
64. (B)

Solution:
127 g of Iodine (1 g eqvt.) is liberatec $=\frac{96500}{127} \times 10$ coulomb
Let current strength be $=\mathrm{I}$, Time in seconds $=1 \times 60 \times 60=3600$ seconds
The quantity of electricity, Q , is given by
$\mathrm{Q}=\mathrm{I} \times$ time in seconds,
$\mathrm{I}=\frac{\mathrm{Q}}{\mathrm{t}}==2.11$
66. (D)

Solution:
250 ml of $0.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 600 ml of 0.25 M KOH
250 ml of $0.8 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 600 ml of 0.25 N KOH 200 ml of $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 150 ml of 1 N KOH

As the vol. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is greater than KOH , the solution is acidic

$$
\begin{aligned}
& \mathrm{V}_{1}=(200-150)=50 \mathrm{ml} \quad ; \mathrm{V}_{2}=(250+600)=850 \mathrm{ml} \\
& \mathrm{~S}_{1}=1 \mathrm{~N} \quad \mathrm{~S}_{2}=? ; \quad \mathrm{V}_{1} \mathrm{~S}_{1}=\mathrm{V}_{2} \mathrm{~S}_{2}
\end{aligned}
$$

$$
=0.0588 \mathrm{~N} \quad \mathrm{~S}_{2}=\frac{50 \times 1}{850}
$$

67. (A)
68. (C)
69. (A) Given that $\mathrm{R}=\mathrm{A}=\mathrm{B}$.

Also, $R^{2}=A^{2}+B^{2}+2 A B \cos \theta$
$\Rightarrow \mathrm{R}^{2}=2 \mathrm{R}^{2}(1+\cos \theta)$
$\Rightarrow \frac{1}{2}-1=\cos \theta$
$\Rightarrow \cos \theta=-\frac{1}{2} \Rightarrow \theta=120^{\circ}$
70. (A) Using $v=u+g t$, we have,

$$
0=\mathrm{u}-\mathrm{gT} \Rightarrow \mathrm{u}=\mathrm{gT}
$$

Also, $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{gs} \Rightarrow 0=\mathrm{u}^{2}-2 \mathrm{gH}$
$\therefore \mathrm{H}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{g}^{2} \mathrm{~T}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{gT}^{2}}{2}$.
Let h be the distance travelled in time t, then,
$\mathrm{h}=\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}=\mathrm{gtT}-\frac{1}{2} \mathrm{gt}^{2}$. \qquad (ii)

Now, $\mathrm{h}-\mathrm{H}=\mathrm{gTt}-\frac{1}{2} \mathrm{gt}^{2}-\frac{1}{2} \mathrm{gT}^{2}=-\frac{\mathrm{g}}{2}(\mathrm{~T}-\mathrm{t})^{2}$

$$
\therefore \mathrm{h}=\mathrm{H}-\frac{\mathrm{g}}{2}(\mathrm{~T}-\mathrm{t})^{2}
$$

71. (C) $u=0, v=20 \mathrm{~m} / \mathrm{s}$ and $\mathrm{t}=10 \mathrm{sec}$
$\therefore \mathrm{v}=\mathrm{u}+\mathrm{at} \Rightarrow 20=\mathrm{a} \times 10 \Rightarrow \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$
Further $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}=0+\frac{1}{2} \times 2 \times(10)^{2}=100 \mathrm{~m}$
\therefore Work $=$ Force x Distance $=$ Mass \times Acceleration \times Distance $=100 \times 2 \times 100=2 \times 10^{4} \mathrm{~J}$
72. (B) $\alpha=\frac{10}{2} \mathrm{rad} / \mathrm{s}^{2}=5 \mathrm{rad} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \mathrm{I}=\mathrm{MR}^{2}=\frac{1}{2} \times(0.2)^{2}=0.02 \mathrm{kgm}^{2} \\
& \mathrm{~T}=\mathrm{I} \alpha=5 \times 0.02=0.10 \mathrm{Nm}
\end{aligned}
$$

73. (C) The radius R of the single drop so firmed will be $R=2{ }^{1 / 3} r$, where $r=$ radius of each drop

For each drop, $\mathrm{mg}=6 \pi \eta \mathrm{rv}$ \qquad
For combined drop, $2 m g=6 \pi \eta R v$
From equation (i) and (ii),
$2 \mathrm{x} 6 \pi \eta \mathrm{rv}=6 \pi \eta \mathrm{Rv}^{\prime} \Rightarrow \mathrm{v}^{\prime}=\frac{2 \mathrm{rv}}{\mathrm{R}}=\frac{2 \mathrm{rv}}{2^{1 / 3} \mathrm{r}}=2^{2 / 3} \mathrm{v}$
74. (B)

$$
\begin{gathered}
\frac{\mathrm{F}_{1}-32}{9}=\frac{\mathrm{C}_{1}}{5} \text { and } \frac{\mathrm{F}_{2}-32}{9}=\frac{\mathrm{C}_{2}}{5} \\
\Rightarrow \frac{\mathrm{~F}_{1}-\mathrm{F}_{2}}{9}=\frac{\mathrm{C}_{1}-\mathrm{C}_{2}}{5} \\
\Rightarrow \frac{\mathrm{~F}_{1}-\mathrm{F}_{2}}{9}=\frac{25^{\circ}}{5}=5
\end{gathered}
$$

$$
\therefore \mathrm{F}_{1}-\mathrm{F}_{2}=9 \times 5=45^{\circ} \mathrm{F}
$$

75. (D) $\mathrm{P}=\frac{1}{3} \rho \mathrm{v}^{-2}=\frac{2}{3}\left(\frac{1}{2} \rho \mathrm{v}^{-2}\right)=\frac{2}{3} \mathrm{E}$
76. (D)

Given $\frac{a_{1}}{a_{2}}=\frac{3}{5}$
Also, $\frac{\sqrt{\mathrm{I}_{1}}}{\sqrt{\mathrm{I}_{2}}}=\frac{3}{5} \quad\left[\because \mathrm{I}_{1} \alpha \mathrm{a}_{1}^{2}\right]$
Intensity is maximum when $\cos \emptyset=1$,
$\therefore \mathrm{I}_{\text {max }}=\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
And intensity is minimum when $\cos \varnothing=0$,
$\therefore \mathrm{I}_{\text {min }}=\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}$
$\therefore \frac{I_{\text {max }}}{I_{\text {min }}}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}=\frac{\left(\frac{3}{5}+1\right)^{2}}{\left(\frac{3}{5}-1\right)^{2}}=64 / 4=16: 1$
77. (D) We know that $\frac{\operatorname{Sin} i}{\operatorname{Sin} r}=\frac{v_{1}}{v_{2}}$

Where v_{1} and v_{2} are the velocities of light in denser and rarer medium respectively.
Now, $\frac{\operatorname{Sin} \mathrm{i}}{\operatorname{Sin} \mathrm{r}}=\frac{\mu_{1}}{\mu_{2}}$
Given that, $\mu_{1}=v$ and $\mu_{2}=2 v$
$\frac{\operatorname{Sin} \mathrm{i}}{\operatorname{Sin} \mathrm{r}}=\frac{\mathrm{v}}{2 \mathrm{v}}=\frac{1}{2}$
If $\mathrm{r}=90^{\circ}$, then $\mathrm{i}=\mathrm{C}$
So, Sin $\mathrm{C}=1 / 2 \therefore \mathrm{C}=30^{\circ}$
78. (A) Here $v=-40 \mathrm{~cm}, u=\infty$

Using the lens formula,

$$
\begin{aligned}
& \frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}, \text { we get, } \\
& \mathrm{F}=-40 \mathrm{~cm}=-0.40 \mathrm{~m} \quad \therefore \mathrm{P}=-\frac{1}{0.40}=-2.5 \mathrm{D}
\end{aligned}
$$

79. (C) $\mathrm{B}=\mu_{\mathrm{o}} \mathrm{H}=4 \pi \times 10^{-7} \times 28=352 \times 10^{-7} \mathrm{~T}=352 \times 10^{-3}$ gauss $=0.352$ gauss
80. (B) $F_{e}=9 \times 10^{9}\left(\frac{e x e}{r^{2}}\right)$ and $F_{G}=6.6 \times 10^{-11}\left(\frac{\mathrm{~m}_{\mathrm{e}} \times \mathrm{m}_{\mathrm{e}}}{\mathrm{r}^{2}}\right)$

$$
\frac{\mathrm{F}_{\mathrm{G}}}{\mathrm{~F}_{\mathrm{e}}}=\frac{6.6 \times 10^{-11}}{9 \times 10^{9}}\left(\frac{\mathrm{~m}_{\mathrm{e}}}{\mathrm{e}}\right)^{2}=\frac{6.6 \times 10^{-11}}{9 \times 10^{9}}\left(\frac{9.1 \times 10^{-31}}{1.6 \times 10^{-19}}\right)^{2} \cong 10^{-42}
$$

81. (B)

$$
\begin{aligned}
\mathrm{e}= & \mathrm{N} \frac{\mathrm{~d} \varnothing}{\mathrm{dt}}=\mathrm{N} \frac{\mathrm{~d}(\mathrm{BA})}{\mathrm{dt}}=\mathrm{NA} \frac{\mathrm{~d}(\mathrm{~B})}{\mathrm{dt}} \\
& =500 \times 100 \times 10^{-4} \times\left(\frac{0.1-0}{0.1}\right)=5 \mathrm{~V}
\end{aligned}
$$

82. (D) $\mathrm{E}_{\mathrm{n}}=\frac{13.6}{\mathrm{n}^{2}}=\frac{13.6}{100}=0.136 \mathrm{eV}$
83. (C) In this reaction, the energy released will be in the form of heat energy.

Energy released $=$ Binding energy of $2 \mathrm{H}^{\mathrm{e4}}$ minus twice the binding energy of $1 \mathrm{H}^{2}=28$ - 2 x $2.2=23.6 \mathrm{Mev}$
84. (A) domain $=R$ as it is defined for all $x \in R$

$$
\text { range }=\left[\frac{1}{3-(-1)}, \frac{1}{3-1}\right]=\left[\frac{1}{4}, \frac{1}{2}\right]
$$

85. (A) we know that $\cos \mathrm{B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}}=\frac{\mathrm{c}^{2}+4 \mathrm{c}^{2}-9 \mathrm{c}^{2}}{2 . \mathrm{c} 2 \mathrm{c}}=\frac{-4 \mathrm{c}^{2}}{4 \mathrm{c}^{2}}=-1$
86. (D) $n=\frac{n(n-3)}{2} \Rightarrow 2=n-3 \Rightarrow n=5$
87. (B) $t_{4}=p \Rightarrow a r^{3}=p$

$$
\begin{aligned}
& \mathrm{t}_{7}=\mathrm{q} \Rightarrow \mathrm{ar}^{6} \Rightarrow \mathrm{br}=\mathrm{q}^{2} \\
& \mathrm{t}_{10}=\mathrm{r} \Rightarrow \mathrm{ar}^{9}=\mathrm{r}
\end{aligned}
$$

88. (C) Equating real and imaginary parts, we get

$$
\begin{aligned}
& x=k+3, \quad y=\sqrt{5-k^{2}} \\
& (x-3)^{2}=k^{2} \quad y^{2}=5-k^{2} \\
& \Rightarrow(x-3)^{2}+y^{2}=5
\end{aligned}
$$

89. (D) $\log \left(1-5 x+6 x^{2}\right)=\log \left(6 x^{2}-3 x-2 x+1\right)$

$$
\begin{aligned}
& =\log _{0}\{3 x(2 x-1)-1(2 x-1)\} \\
& =\log _{e}(2 x-1)(3 x-1) \\
& =\log _{e}(1-2 x)+\log _{e}(1-3 x) \\
& =2 x-\frac{(2 x)^{2}-(2 x)^{3}}{3}-\ldots \ldots \ldots+\left[3 x-\frac{(3 x)^{2}}{2}-\frac{(3 x)^{2}}{3}-.\right.
\end{aligned}
$$

Coeff. of $\mathrm{x}^{3}=-\frac{8}{3}-\frac{27}{3}=-\frac{35}{3}$
90. (D) $|\vec{a}|=\sqrt{3^{2}+(-5)^{2},|\vec{b}|=\sqrt{6^{2}+(3)^{2}}}$

$$
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=39 \overrightarrow{\mathrm{k}}, \quad|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=39
$$

So, $|\vec{a}|:|\vec{b}|:|\vec{a} \times \vec{b}|=\sqrt{34}: \sqrt{45}: 39$
91. (C) Equation of bisectors is $h\left(x^{2}-y^{2}\right)=(a-b) x y$

Combined equation of axes is $x y=0$

$$
\text { So } \mathrm{h}=0
$$

92. (B) $2 \mathrm{nr}=10 \pi \Rightarrow \mathrm{r}=5$

Equation circle is $(x-2)^{2}+(y+3)^{2}=5^{2}$

$$
\text { ie. } x^{2}+y^{2}-4 x+6 y-12=0
$$

93. (B) The line is $1 x+m y+n=0$ ie. $y=\frac{1}{m} x-\frac{n}{m}$ is

$$
\text { tangent to } y^{2}=4 a x \text { if }-\frac{n}{m}=\frac{a}{-\frac{1}{m}} \Rightarrow \ln =a^{2}
$$

94. (A) equation of plan is $(2-0)(x-2)+(6-0)(y-6)+(3-0)(z-3)=0$

$$
\begin{aligned}
& 2 x-4+6 y-36+3 z-9=0 \\
& \text { ie. } 2 x+6 y+3 z=49
\end{aligned}
$$

95. (C) $y=\sin x-\cos x$

$$
\begin{aligned}
& \frac{d y}{d x}=\cos x+\sin x \\
& \frac{d^{2} y}{d x^{2}}=-\sin x+\cos x \\
& \frac{d^{3} y}{d x^{3}}=-\cos x-\sin x \\
& \frac{d^{4} 4}{d x^{4}}=\sin x-\cos x
\end{aligned}
$$

and so on
96. (A) $f^{1}(x)=x^{x}\left(1+\log _{e} x\right)$

For stationary point $f^{1}(x)=0$

$$
\begin{gathered}
\Rightarrow 1+\log _{\mathrm{e} x}=0 \\
\Rightarrow \log _{\mathrm{e}} \mathrm{x}=-1 \\
\Rightarrow \mathrm{x}=\frac{1}{\mathrm{e}}
\end{gathered}
$$

97.

(D) $\int_{0}^{\frac{\pi}{2}} \frac{(\sin x+\cos x)^{2}}{\sqrt{1+\sin 2 x}} d x=\int_{0}^{\frac{\pi}{2}}(\sin x+\cos x) d x$

$$
\begin{aligned}
& =(\sin x-\cos x)_{0}^{\pi / 2} \\
& =(1-0)-(0-1) \\
& =1+1=2
\end{aligned}
$$

98. (B) Solving $y=x^{2}$ and $y=x$,

$$
\begin{aligned}
& x=0,1 \\
& \begin{aligned}
\therefore \text { Required are } a & =\int_{0}^{1}\left(y_{1}-4_{2}\right) d x \\
& =\int_{0}^{1}\left(x^{2}-x\right) d x \\
& =\left[\frac{1^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}=\frac{1}{6}
\end{aligned}
\end{aligned}
$$

99. (C)
100. (A)
